This paper analyzes the technical and economic possibilities of integrating distributed energy resources (DERs) and energy-storage systems (ESSs) into a virtual power plant (VPP) and operating them as a single power plant. The purpose of the study is to assess the economic efficiency of the VPP model, which is influenced by several factors such as energy price and energy production. Ten scenarios for the VPP were prepared on the basis of the installed capacities of a hydropower plant (HPP), rooftop solar photovoltaic (PV), and energy-storage system (ESS), as well as weather conditions, in Poland. On the basis of technical conditions, it was assumed that the maximum power capacity of the ESS equaled 1.5 MW. The economic efficiency analysis presented in this paper demonstrated that, in seven years, the VPP will achieve a positive value of the net present value (NPV) for a scenario with 0.5 MW battery storage and rainy summers. Furthermore, sensitivity analysis was conducted on price factors and DER production volume. The price variable had a major impact on the NPV value for all scenarios. The scenario with a 0.5 MW battery and typical summers was highly sensitive to all factors, and its sensitivity decreased as the ESS capacity grew from 0.5 to 1.5 MW.
The article presents calculations and power flow of a real virtual power plant (VPP), containing a fragment of low and medium voltage distribution network. The VPP contains a hydropower plant (HPP), a photovoltaic system (PV) and energy storage system (ESS). The purpose of this article is to summarize the requirements for connection of generating units to the grid. Paper discusses the impact of the requirements on the maximum installed capacity of distributed energy resource (DER) systems and on the parameters of the energy storage unit. Firstly, a comprehensive review of VPP definitions, aims, as well as the characteristics of the investigated case study of the VPP project is presented. Then, requirements related to the regulation, protection and integration of DER and ESS with power systems are discussed. Finally, investigations related to influence of DER and ESS on power network condition are presented. One of the outcomes of the paper is the method of identifying the maximum power capacity of DER and ESS in accordance with technical network requirements. The applied method uses analytic calculations, as well as simulations using Matlab environment, combined with real measurement data. The obtained results allow the influence of the operating conditions of particular DER and ESS on power flow and voltage condition to be identified, the maximum power capacity of ESS intended for the planed VPP to be determined, as well as the influence of power control strategies implemented in a PV power plant on resources available for the planning and control of a VPP to be specified. Technical limitations of the DER and ESS are used as input conditions for the economic simulations presented in the accompanying paper, which is focused on investigations of economic efficiency.
Recently a number of changes were introduced in amendment to standard EN 50160 related to power quality (PQ) including 1 min aggregation intervals and the obligation to consider 100% of measured data taken for the assessment of voltage variation in a low voltage (LV) supply terminal. Classical power quality assessment can be extended using a correlation analysis so that relations between power quality parameters and external indices such as weather conditions or power demand can be revealed. This paper presents the results of a comparative investigation of the application of 1 and 10 min aggregation times in power quality assessment as well as in the correlation analysis of power quality parameters and weather conditions and the energy production of a 100 kW photovoltaic (PV) power plant connected to a LV network. The influence of the 1 min aggregation time on the result of the PQ assessment as well as the correlation matrix in comparison with the 10 min aggregation algorithm is presented and discussed. Energies 2019, 12, 3547 2 of 18 measurement time intervals are aggregated over a 150/180-cycle interval (150 cycles for 50 Hz nominal or 180 cycles for 60 Hz nominal), 10 min interval and 2 h interval.The review of present literature indicates that there is some discussion related to the assessment of power quality in terms of the influence of the aggregation time interval on the effect of the assessment. This issue has a significant meaning in terms of the assessment of power quality at the point of the common coupling (PCC) of the distributed generation (DG), especially when the observed DG is characterized by high variations of the energy production. Common examples are PV installations with their inherent relation of generated energy with cloud effect. The discussed aspect has already been reflected in the amendment to standard EN 50160:2015 where a 1 min aggregation interval is suggested for the assessment of voltage variation in low voltage (LV) power systems. Selected issues related to aggregation interval influence can be found in the below works:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.