Vacuolar protein sorting 35 (VPS35) is a core component of the retromer complex, crucial to endosomal protein sorting and intracellular trafficking. We recently linked a mutation in VPS35 (p.D620N) to familial parkinsonism. Here, we characterize human VPS35 and retromer function in mature murine neuronal cultures and investigate neuron-specific consequences of the p.D620N mutation. We find VPS35 localizes to dendritic spines and is involved in the trafficking of excitatory AMPA-type glutamate receptors (AMPARs). Fundamental neuronal processes, including excitatory synaptic transmission, AMPAR surface expression and synaptic recycling are altered by VPS35 overexpression. VPS35 p.D620N acts as a loss-of-function mutation with respect to VPS35 activity regulating synaptic transmission and AMPAR recycling in mouse cortical neurons and dopamine neuron-like cells produced from induced pluripotent stem cells of human p.D620N carriers. Such perturbations to synaptic function likely produce chronic pathophysiological stress upon neuronal circuits that may contribute to neurodegeneration in this, and other, forms of parkinsonism.
LRRK2 mutations produce end-stage Parkinson’s disease (PD) with reduced nigrostriatal dopamine, whereas, asymptomatic carriers have increased dopamine turnover and altered brain connectivity. LRRK2 pathophysiology remains unclear, but reduced dopamine and mitochondrial abnormalities occur in aged G2019S mutant knock-in (GKI) mice. Conversely, cultured GKI neurons exhibit increased synaptic transmission. We assessed behavior and synaptic glutamate and dopamine function across a range of ages. Young GKI mice exhibit more vertical exploration, elevated glutamate and dopamine transmission, and aberrant D2-receptor responses. These phenomena decline with age, but are stable in littermates. In young GKI mice, dopamine transients are slower, independent of dopamine transporter (DAT), increasing the lifetime of extracellular dopamine. Slowing of dopamine transients is observed with age in littermates, suggesting premature ageing of dopamine synapses in GKI mice. Thus, GKI mice exhibit early, but declining, synaptic and behavioral phenotypes, making them amenable to investigation of early pathophysiological, and later parkinsonian-like, alterations. This model will prove valuable in efforts to develop neuroprotection for PD.
Vacuolar protein sorting 35 (VPS35) is a core component of the retromer trimer required for endosomal membrane-associated protein trafficking. The discovery of a missense mutation, Vps35 p.D620N implicates retromer dysfunction in the pathogenesis of Parkinson’s disease (PD). We have characterized a knock-in mouse with a Vps35 p.D620N substitution (hereafter referred to as VKI) at 3 months of age. Standardized behavioral testing did not observe overt movement disorder. Tyrosine hydroxylase (TH)-positive nigral neuron counts and terminal expression in striata were comparable across genotypes. Fast scan cyclic voltammetry revealed increased dopamine release in VKI striatal slices. While extracellular dopamine collected via striatal microdialysis of freely moving animals was comparable across genotypes, the ratio of dopamine metabolites to dopamine suggests increased dopamine turnover in VKI homozygous mice. Western blot of striatal proteins revealed a genotype-dependent decrease in dopamine transporter (DAT) along with an increase in vesicular monoamine transporter 2 (VMAT2), albeit independent of changes in other synaptic markers. The reduction in DAT was further supported by immunohistochemical analysis. The data show that the dopaminergic system of VKI mice is profoundly altered relative to wild-type littermates. We conclude early synaptic dysfunction contributes to age-related pathophysiology in the nigrostriatal system that may lead to parkinsonism in man.
The Canada Excellence Research Chairs (CERC), Leading Edge Endowment Fund (LEEF), Don Rix BC Leadership Chair in Genetic Medicine, National Institute on Aging, National Institute of Neurological Disorders and Stroke, the Michael J Fox Foundation, Mayo Foundation, the Roger de Spoelberch Foundation, and GlaxoSmithKline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.