Avoiding destruction by immune cells is a hallmark of cancer, yet how tumors ultimately evade control by natural killer (NK) cells remains incompletely defined. Using global transcriptomic and flow-cytometry analyses and genetically engineered mouse models, we identified the cytokine-TGF-β-signaling-dependent conversion of NK cells (CD49aCD49bEomes) into intermediate type 1 innate lymphoid cell (intILC1) (CD49aCD49bEomes) populations and ILC1 (CD49aCD49bEomes) populations in the tumor microenvironment. Strikingly, intILC1s and ILC1s were unable to control local tumor growth and metastasis, whereas NK cells favored tumor immunosurveillance. Experiments with an antibody that neutralizes the cytokine TNF suggested that escape from the innate immune system was partially mediated by TNF-producing ILC1s. Our findings provide new insight into the plasticity of group 1 ILCs in the tumor microenvironment and suggest that the TGF-β-driven conversion of NK cells into ILC1s is a previously unknown mechanism by which tumors escape surveillance by the innate immune system.
Motivation: Fast algorithms and well-arranged visualizations are required for the comprehensive analysis of the ever-growing size of genomic and transcriptomic next-generation sequencing data.Results: ReadXplorer is a software offering straightforward visualization and extensive analysis functions for genomic and transcriptomic DNA sequences mapped on a reference. A unique specialty of ReadXplorer is the quality classification of the read mappings. It is incorporated in all analysis functions and displayed in ReadXplorer's various synchronized data viewers for (i) the reference sequence, its base coverage as (ii) normalizable plot and (iii) histogram, (iv) read alignments and (v) read pairs. ReadXplorer's analysis capability covers RNA secondary structure prediction, single nucleotide polymorphism and deletion–insertion polymorphism detection, genomic feature and general coverage analysis. Especially for RNA-Seq data, it offers differential gene expression analysis, transcription start site and operon detection as well as RPKM value and read count calculations. Furthermore, ReadXplorer can combine or superimpose coverage of different datasets.Availability and implementation: ReadXplorer is available as open-source software at http://www.readxplorer.org along with a detailed manual.Contact: rhilker@mikrobio.med.uni-giessen.deSupplementary information: Supplementary data are available at Bioinformatics online.
Mucosal-associated invariant T (MAIT) cells are a unique innate-like T cell subset that responds to a wide array of bacteria and yeast through recognition of riboflavin metabolites presented by the MHC class I-like molecule MR1. Here, we demonstrate using MR1 tetramers that recipient MAIT cells are present in small but definable numbers in graft-versus-host disease (GVHD) target organs and protect from acute GVHD in the colon following bone marrow transplantation (BMT). Consistent with their preferential juxtaposition to microbial signals in the colon, recipient MAIT cells generate large amounts of IL-17A, promote gastrointestinal tract integrity, and limit the donor alloantigen presentation that in turn drives donor Th1 and Th17 expansion specifically in the colon after BMT. Allogeneic BMT recipients deficient in IL-17A also develop accelerated GVHD, suggesting MAIT cells likely regulate GVHD, at least in part, by the generation of this cytokine. Indeed, analysis of stool microbiota and colon tissue from IL-17A-/- and MR1-/- mice identified analogous shifts in microbiome operational taxonomic units (OTU) and mediators of barrier integrity that appear to represent pathways controlled by similar, IL-17A-dependent mechanisms. Thus, MAIT cells act to control barrier function to attenuate pathogenic T cell responses in the colon and, given their very high frequency in humans, likely represent an important population in clinical BMT.
Several host factors may affect the spread of cancer to distant organs; however, the intrinsic role of dendritic cells (DC) in controlling metastasis is poorly described. Here, we show in several tumor models that although the growth of primary tumors in Batf3-deficient mice, which lack cross-presenting DCs, was not different from primary tumors in wild-type (WT) control mice, Batf3-deficient mice had increased experimental and spontaneous metastasis and poorer survival. The increased metastasis was independent of CD4 and CD8 T lymphocytes, but required NK cells and IFNγ. Chimeric mice in which Batf3-dependent DCs uniformly lacked the capacity to produce IL12 had metastatic burdens similar to the Batf3-deficient mice, suggesting that Batf3 DCs were the only cell type whose IL12 production was critical for controlling metastasis. We found that IL12-YFP reporter mice, whose lungs were injected with B16F10 melanoma, had increased numbers of IL12-expressing CD103 DCs with enhanced CD86 expression. Bone-marrow-derived DCs from WT, but not Batf3-deficient, mice activated NK cells to produce IFNγ in an IL12-dependent manner and therapeutic injection of recombinant mouse IL12 decreased metastasis in both WT and Batf3-deficient mice. Analysis of TCGA datasets revealed an association between high expression of and and improved survival of breast cancer patients; expression also significantly correlated with NK-cell receptor genes,, and Collectively, our findings show that IL12 from CD103 DCs is critical for NK cell-mediated control of tumor metastasis. .
The dynamics of CD4 + T cell memory development remain to be examined at genome scale. In malaria-endemic regions, antimalarial chemoprevention protects long after its cessation and associates with effects on CD4 + T cells. We applied single-cell RNA sequencing and computational modelling to track memory development during Plasmodium infection and treatment. In the absence of central memory precursors, two trajectories developed as T helper 1 (T H 1) and follicular helper T (T FH) transcriptomes contracted and partially coalesced over three weeks. Progeny of single clones populated T H 1 and T FH trajectories, and fate-mapping suggested that there was minimal lineage plasticity. Relationships between T FH and central memory were revealed, with antimalarials modulating these responses and boosting T H 1 recall. Finally, single-cell epigenomics confirmed that heterogeneity among effectors was partially reset in memory. Thus, the effector-to-memory transition in CD4 + T cells is gradual during malaria and is modulated by antiparasitic drugs. Graphical user interfaces are presented for examining gene-expression dynamics and gene-gene correlations (http://haquelab.mdhs.unimelb.edu.au/cd4_memory/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.