Age-associated decreases in primary CD8 T cell responses occur, in part, due to direct effects on naive CD8 T cells to reduce intrinsic functionality, but the precise nature of this defect remains undefined. Aging also causes accumulation of antigen-naive but semi-differentiated "virtual memory" (T) cells, but their contribution to age-related functional decline is unclear. Here, we show that T cells are poorly proliferative in aged mice and humans, despite being highly proliferative in young individuals, while conventional naive T cells (T cells) retain proliferative capacity in both aged mice and humans. Adoptive transfer experiments in mice illustrated that naive CD8 T cells can acquire a proliferative defect imposed by the aged environment but age-related proliferative dysfunction could not be rescued by a young environment. Molecular analyses demonstrate that aged T cells exhibit a profile consistent with senescence, marking an observation of senescence in an antigenically naive T cell population.
Summary
The molecular mechanisms that regulate the rapid transcriptional changes that occur during cytotoxic T lymphocyte (CTL) proliferation and differentiation in response to infection are poorly understood. We have utilised ChIP-seq to assess histone H3 methylation dynamics within naïve, effector and memory virus-specific T cells isolated directly ex vivo after influenza A virus infection. Our results show that within naïve T cells, co-deposition of the permissive H3K4me3 and repressive H3K27me3 modifications is a signature of gene loci associated with gene transcription, replication and cellular differentiation. Upon differentiation into effector and/or memory CTL, the majority of these gene loci lose the repressive H3K27me3 while retaining the permissive H3K4me3 modification. In contrast, immune-related effector gene promoters within naïve T cells lacked the permissive H3K4me3 modification, with acquisition of this modification occurring upon differentiation into effector/memory CTL. Thus, coordinate transcriptional regulation of CTL genes with related functions is achieved using distinct epigenetic mechanisms.
Studies in yeast demonstrate that signaling kinases have a surprisingly active role in the nucleus, where they tether to chromatin and modulate gene expression programs. Despite these seminal studies, the nuclear mechanism of how signaling kinases control transcription of mammalian genes is in its infancy. Here, we provide evidence for a hitherto unknown function of protein kinase C-theta (PKC-θ), which physically associates with the regulatory regions of inducible immune response genes in human T cells. Chromatin-anchored PKC-θ forms an active nuclear complex by interacting with RNA polymerase II, the histone kinase MSK-1, and the adaptor molecule 14-3-3ζ. ChIP-on-chip reveals that PKC-θ binds to promoters and transcribed regions of genes, as well as to microRNA promoters that are crucial for cytokine regulation. Our results provide a molecular explanation for the role of PKC-θ not only in normal T cell function, but also in circumstances of its ectopic expression in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.