Considerable evidence implicates cellular senescence in the biology of aging and chronic disease. Diet and exercise are determinants of healthy aging; however, the extent to which they affect the behavior and accretion of senescent cells within distinct tissues is not clear. Here we tested the hypothesis that exercise prevents premature senescent cell accumulation and systemic metabolic dysfunction induced by a fast-food diet (FFD). Using transgenic mice that express EGFP in response to activation of the senescence-associated p16INK4a promoter, we demonstrate that FFD consumption causes deleterious changes in body weight and composition as well as in measures of physical, cardiac, and metabolic health. The harmful effects of the FFD were associated with dramatic increases in several markers of senescence, including p16, EGFP, senescenceassociated b-galactosidase, and the senescenceassociated secretory phenotype (SASP) specifically in visceral adipose tissue. We show that exercise prevents the accumulation of senescent cells and the expression of the SASP while nullifying the damaging effects of the FFD on parameters of health. We also demonstrate that exercise initiated after long-term FFD feeding reduces senescent phenotype markers in visceral adipose tissue while attenuating physical impairments, suggesting that exercise may provide restorative benefit by mitigating accrued senescent burden. These findings highlight a novel mechanism by which exercise mediates its beneficial effects and reinforces the effect of modifiable lifestyle choices on health span.
Nuclear reprogramming of somatic tissue enables derivation of induced pluripotent stem (iPS) cells from an autologous, non-embryonic origin. The purpose of the current study was to establish efficient protocols for lineage-specification of human iPS cells into functional glucose-responsive, insulin-producing progeny. We generated human iPS cells, which were then guided with recombinant growth factors that mimic the essential signaling for pancreatic development. Reprogrammed with four stemness factors, human fibroblasts were here converted into authentic iPS cells. Under feeder-free conditions, fate-specification was initiated with activin A and Wnt3a that triggered engagement into definitive endoderm, followed by priming with FGF10 and KAAD-cyclopamine. Addition of retinoic acid, boosted by the pancreatic endoderm inducer indolactam V (ILV), yielded pancreatic progenitors expressing PDX1, NGN3 and NEUROD1 markers. Further guidance, under IGF-1, HGF and DAPT, was enhanced by glucagon like peptide-1 (GLP-1) to generate islet-like cells that expressed pancreas-specific markers including insulin and glucagon. Derived progeny demonstrated sustained expression of PDX1, and functional responsiveness to glucose challenge secreting up to 230 pM of C-peptide. A pancreatogenic cocktail enriched with ILV/GLP-1 offers a proficient means to specify human iPS cells into glucose-responsive hormone-producing progeny, refining the development of a personalized platform for islet-like cell generation.
APOBEC3B, an anti-viral cytidine deaminase which induces DNA mutations, has been implicated as a mediator of cancer evolution and therapeutic resistance. Mutational plasticity also drives generation of neoepitopes, which prime anti-tumor T cells. Here, we show that overexpression of APOBEC3B in tumors increases resistance to chemotherapy, but simultaneously heightens sensitivity to immune checkpoint blockade in a murine model of melanoma. However, in the vaccine setting, APOBEC3B-mediated mutations reproducibly generate heteroclitic neoepitopes in vaccine cells which activate de novo T cell responses. These cross react against parental, unmodified tumors and lead to a high rate of cures in both subcutaneous and intra-cranial tumor models. Heteroclitic Epitope Activated Therapy (HEAT) dispenses with the need to identify patient specific neoepitopes and tumor reactive T cells ex vivo. Thus, actively driving a high mutational load in tumor cell vaccines increases their immunogenicity to drive anti-tumor therapy in combination with immune checkpoint blockade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.