BackgroundProbiotics have been considered as an approach to addressing the consequences of different inflammatory disorders. The spore-forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic inulin also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota.ObjectiveIn the present study, an in vivo model was conducted to investigate the possible influences of probiotic B. coagulans and prebiotic inulin, both in combination and/or separately, on the downregulation of immune responses and the progression of rheumatoid arthritis (RA), using arthritis-induced rat model.DesignForty-eight healthy male Wistar rats were randomly categorized into six experimental groups as follows: 1) control: normal healthy rats fed with standard diet, 2) disease control (RA): arthritis-induced rats fed with standard diet, 3) prebiotic (PRE): RA+ 5% w/w long-chain inulin, 4) probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) synbiotic (SYN): RA+ 5% w/w long-chain inulin and 109 spores/day B. coagulans, and 6) treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with the listed diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund's adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by the biochemical parameters and paw thickness. Biochemical assay for fibrinogen (Fn), serum amyloid A (SAA), and TNF-α and alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28, and 35 (7, 14 and 21 days post RA induction), respectively.ResultsPretreatment with PRE, PRO, and SYN diets significantly inhibits SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in the production of pro-inflammatory cytokines, such as TNF-α, was seen in the PRE, PRO, and SYN groups (P < 0.001), which was similar to the anti-inflammatory effect of indomethacin. Furthermore, no significant anti-inflammatory effects were observed following different treatments using α1AGp as an RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001).ConclusionThe results of this study indicate that the oral intake of probiotic B. coagulans and prebiotic inulin can improve the biochemical and clinical parameters of induced RA in rat.
Vitamin C (L-ascorbic acid or ascorbate) is a biomolecule that participates in many biochemical processes. It is an essential nutrient for humans, however, in some species such as rodents and guinea pigs is synthesized. It has a variety of functions in the body that we might venture to say make it a very important antioxidant nature and pro-oxidant. L-ascorbic acidic a reduced form of vitamin C and dehydroascorbic acid (DHA) is the oxidized form of ascorbate, both L-ascorbic acid and dihydroascorbic acid retain the vitamin C activity. Dehydro-ascorbate is reconverted to ascorbate in the cytosol by cytochrome b reductase and thioredoxin reductase in reactions involving NADH and NADPH, respectively. Ascorbate is transported into the cell via the sodium-dependent vitamin C transporters (SVCTs), which causes accumulation of ascorbate within cells against a concentration gradient. Dehydroascorbic acid, the oxidized form of ascorbate, is transported via glucose transporters family (GLUTs). The highest concentrations of ascorbate in the body are found in brain and adrenal gland. Vitamin C also acts as a co-factor in several enzyme reactions. This vitamin is an essential biochemical factor in the reproductive process. The pharmacophore of vitamin C is the ascorbate, ascorbate is an antioxidant.Ascorbate is a neuromodulator of glutamatergic and dopaminergic system and related behaviors. It also improves components of the immune system. Given the wide role of ascorbate, further investigation is necessary to evaluate the exact mechanism(s) underlying these effects. In this review we will consider a short overview of the characteristics and function of vitamin C (relying on antioxidant function) in various tissues.
The objective of this study was to evaluate the efficiency of probiotics (Lactobacillus plantarum and Bacillus coagulans) against mercury-induced toxicity using a rat model. Mercury (Hg) is a widespread heavy metal and was shown to be associated with various diseases. Forty-eight adult male Wistar rats were randomly divided into six groups (control, mercury-only, each probiotic-only, and mercury plus each probiotic group). Hg-treated groups received 10 ppm mercuric chloride, and probiotic groups were administrated 1 × 10 CFU of probiotics daily for 48 days. Levels of mercury were determined using cold vapor technique, and some biochemical factors (list like glutathione peroxidase (GPx), superoxide dismutase (SOD), creatinine, urea, bilirubin, alanine transaminase (ALT), and aspartate transaminase (AST)) were measured to evaluate changes in oxidative stress. Oral administration of either probiotic was found to provide significant protection against mercury toxicity by decreasing the mercury level in the liver and kidney and preventing alterations in the levels of GPx and SOD. Probiotic treatment generated marked reduction in the levels of creatinine, urea, bilirubin, ALT, and AST indicating the positive influence of the probiotics on the adverse effects of Hg in the body.
An in vivo trial was conducted to evaluate the effects of Bacillus coagulans, and inulin, either separately or in combination, on lipid profile using a rat model. Thirty-two male Wistar rats were randomly divided into four groups (n=8) and fed as follows: standard diet (control), standard diet with 5% w/w long chain inulin (prebiotic), standard diet with 10 9 spores/day spores of B. coagulans by orogastric gavage (probiotic), and standard diet with 5% w/w long chain inulin and 10 9 spores/day of B. coagulans (synbiotic). Rats were fed for 30 days. Serum samples were collected 10, 20 and 30 days following onset of treatment. Total, HDL and LDL cholesterol and triglycerides concentrations were analyzed. Results of this study showed that inulin potentially affected the lipid profile. An obvious decrease in serum total cholesterol and LDL-cholesterol of rats fed with inulin in symbiotic and prebiotic groups was seen in all sampling days. Inulin fed rats also demonstrated higher levels of HDL-cholesterol concentration; however this value in probiotic and control fed rats remains without significant change. According to the results of this study, B. coagulans did not contribute to any lipid profile changes after 30 days. Thus, further in vitro investigations on the characteristic of these bacteria could be useful to gain insights into understanding the treatment of probiotics in order to achieve the maximum beneficial effect.
BackgroundCadmium is a heavy metal that causes oxidative stress and has toxic effects in humans. The aim of this study was to investigate the influence of two probiotics along with a prebiotic in preventing the toxic effects of cadmium in rats.MethodsTwenty-four male Wistar rats were randomly divided into four groups namely control, cadmium only, cadmium along with Lactobacillus plantarum (1 × 109 CFU/day) and inulin (5% of feedstuff) and cadmium along with Bacillus coagulans (1 × 109 spore/day) and inulin (5% of feedstuff). Cadmium treated groups received 200 μg/rat/day CdCl2 administered by gavage. During the 42-day experimental period, they were weighed weekly. For evaluation of changes in oxidative stress, the levels of some biochemicals and enzymes of serum including SOD, GPX, MDA, AST, ALT, total bilirubin, BUN and creatinine, and also SOD level of livers were measured at day 21 and 42 of treatment. The cadmium content of kidney and liver was determined by using atomic absorption mass spectrophotometry. Data were analyzed using analysis of variance (ANOVA) followed by Duncan’s post hoc test.ResultsTreatment of cadmium induced rats with synbiotic diets significantly improved the liver enzymes and biochemical parameters that decreased AST, ALT, total bilirubin, BUN and metal accumulation in the liver and kidney and increased body weight, serum and liver SOD values in comparison with the cadmium-treated group. No significant differences were observed with MDA and GPX values between all groups (p > 0.05).ConclusionsThis study showed that synbiotic diets containing probiotics (L. plantarum and B. coagulans) in combination with the prebiotic (inulin) can reduce the level of cadmium in the liver and kidney, preventing their damage and recover antioxidant enzymes in acute cadmium poisoning in rat.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-017-1803-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.