Background The long-distance dispersal of the invasive disease vectors Aedes aegypti and Aedes albopictus has introduced arthropod-borne viruses into new geographical regions, causing a significant medical and economic burden. The used-tire industry is an effective means of Aedes dispersal, yet studies to determine Aedes occurrence and the factors influencing their distribution along local transport networks are lacking. To assess infestation along the primary transport network of Panama we documented all existing garages that trade used tires on the highway and surveyed a subset for Ae. aegypti and Ae. albopictus . We also assess the ability of a mass spectrometry approach to classify mosquito eggs by comparing our findings to those based on traditional larval surveillance. Results Both Aedes species had a high infestation rate in garages trading used tires along the highways, providing a conduit for rapid dispersal across Panama. However, generalized linear models revealed that the presence of Ae. aegypti is associated with an increase in road density by a log-odds of 0.44 (0.73 ± 0.16; P = 0.002), while the presence of Ae. albopictus is associated with a decrease in road density by a log-odds of 0.36 (0.09 ± 0.63; P = 0.008). Identification of mosquito eggs by mass spectrometry depicted similar occurrence patterns for both Aedes species as that obtained with traditional rearing methods. Conclusions Garages trading used tires along highways should be targeted for the surveillance and control of Aedes -mosquitoes and the diseases they transmit. The identification of mosquito eggs using mass spectrometry allows for the rapid evaluation of Aedes presence, affording time and cost advantages over traditional vector surveillance; this is of importance for disease risk assessment. Electronic supplementary material The online version of this article (10.1186/s13071-019-3522-8) contains supplementary material, which is available to authorized users.
This work presents a methodology to automatically detect and identify manatee vocalizations in continuous passive acoustic underwater recordings. Given that vocalizations of each manatee present a slightly different frequency content, it is possible to identify individuals using a non-invasive acoustic approach. The recordings are processed in four stages, including detection, denoising, classification, and manatee counting and identification by vocalization clustering. The main contribution of this work is considering the vocalization spectrogram as an image (i.e., two-dimensional pattern) and representing it in terms of principal component analysis coefficients that feed a clustering approach. A performance study is carried out for each stage of the scheme. The methodology is tested to analyze three years of recordings from two wetlands in Panama to support ongoing efforts to estimate the manatee population.
BackgroundMalaria control in Panama is problematic due to the high diversity of morphologically similar Anopheles mosquito species, which makes identification of vectors of human Plasmodium challenging. Strategies by Panamanian health authorities to bring malaria under control targeting Anopheles vectors could be ineffective if they tackle a misidentified species.MethodsA rapid mass spectrometry identification procedure was developed to accurately and timely sort out field-collected Neotropical Anopheles mosquitoes into vector and non-vector species. Matrix-assisted laser desorption/ionization (MALDI) mass spectra of highly-abundant proteins were generated from laboratory-reared mosquitoes using different extraction protocols, body parts, and sexes to minimize the amount of material from specimen vouchers needed and optimize the protocol for taxonomic identification. Subsequently, the mass spectra of field-collected Neotropical Anopheles mosquito species were classified using a combination of custom-made unsupervised (i.e., Principal component analysis—PCA) and supervised (i.e., Linear discriminant analysis—LDA) classification algorithms.ResultsRegardless of the protocol used or the mosquito species and sex, the legs contained the least intra-specific variability with enough well-preserved proteins to differentiate among distinct biological species, consistent with previous literature. After minimizing the amount of material needed from the voucher, one leg was enough to produce reliable spectra between specimens. Further, both PCA and LDA were able to classify up to 12 mosquito species, from different subgenera and seven geographically spread localities across Panama using mass spectra from one leg pair. LDA demonstrated high discriminatory power and consistency, with validation and cross-validation positive identification rates above 93% at the species level.ConclusionThe selected sample processing procedure can be used to identify field-collected Anopheles species, including vectors of Plasmodium, in a short period of time, with a minimal amount of tissue and without the need of an expert mosquito taxonomist. This strategy to analyse protein spectra overcomes the drawbacks of working without a reference library to classify unknown samples. Finally, this MALDI approach can aid ongoing malaria eradication efforts in Panama and other countries with large number of mosquito’s species by improving vector surveillance in epidemic-prone sites such as indigenous Comarcas.Electronic supplementary materialThe online version of this article (10.1186/s12936-019-2723-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.