MicroRNA-122 (miR-122), which accounts for 70% of the liver's total miRNAs, plays a pivotal role in the liver. However, its intrinsic physiological roles remain largely undetermined. We demonstrated that mice lacking the gene encoding miR-122a (Mir122a) are viable but develop temporally controlled steatohepatitis, fibrosis, and hepatocellular carcinoma (HCC). These mice exhibited a striking disparity in HCC incidence based on sex, with a male-to-female ratio of 3.9:1, which recapitulates the disease incidence in humans. Impaired expression of microsomal triglyceride transfer protein (MTTP) contributed to steatosis, which was reversed by in vivo restoration of Mttp expression. We found that hepatic fibrosis onset can be partially attributed to the action of a miR-122a target, the Klf6 transcript. In addition, Mir122a -/-livers exhibited disruptions in a range of pathways, many of which closely resemble the disruptions found in human HCC. Importantly, the reexpression of miR-122a reduced disease manifestation and tumor incidence in Mir122a -/-mice. This study demonstrates that mice with a targeted deletion of the Mir122a gene possess several key phenotypes of human liver diseases, which provides a rationale for the development of a unique therapy for the treatment of chronic liver disease and HCC.
MRA evaluation in patients with RCVS is valid. Vasoconstriction was pervasive and outlasted headache resolution. Vasoconstrictions in M1 and P2 are important determinants for PRES and ischemic stroke.
Most cases with antituberculosis drug-induced hepatitis have been attributed to isoniazid. Isoniazid is metabolized by hepatic N-acetyltransferase (NAT) and cytochrome P450 2E1 (CYP2E1) to form hepatotoxins. However, the role of CYP2E1 in this hepatotoxicity has not yet been reported. The aim of this study was to evaluate whether the polymorphism of the CYP2E1 gene is associated with antituberculosis drug-induced hepatitis. A total of 318 tuberculosis patients who received antituberculosis treatment were followed prospectively. Their CYP2E1 and NAT2 genotypes were determined using a polymerase chain reaction with restriction fragment length polymorphism method. Twenty-one healthy volunteers were recruited for CYP2E1 phenotype study using a chlorzoxazone test. Forty-nine (15.4%) patients were diagnosed to have drug-induced hepatotoxicity. Patients with homozygous wild genotype CYP2E1 c1/c1 had a higher risk of hepatotoxicity (20.0%; odds ratio [OR], 2.52) than those with mutant allele c2 (CYP2E1 c1/c2 or c2/c2, 9.0%, P ؍ .009). If CYP2E1 c1/c2 or c2/c2 genotype combined with rapid acetylator status was regarded as the reference group, the risk of hepatotoxicity increased from 3.94 for CYP2E1 c1/c1 with rapid acetylator status to 7.43 for CYP2E1 c1/c1 with slow acetylator status. After adjustment for acetylator status and age, the CYP2E1 c1/c1 genotype remained an independent risk factor for hepatotoxicity (OR, 2.38; P ؍ .017). Furthermore, under the administration of isoniazid, the volunteers with CYP2E1 c1/c1 genotype had higher CYP2E1 activity than those with other genotypes had and, hence, might produce more hepatotoxins. In conclusion, CYP 2E1 genetic polymorphism may be associated with susceptibility to antituberculosis drug-induced hepatitis. (HEPATOLOGY 2003;37:924-930.)
The epithelial-mesenchymal transition (EMT) is critical for induction of invasiveness and metastasis of human cancers. In this study we investigated the expression profiles of the EMT markers, the relationship between EMT markers and patient/tumor/viral factors, and the interplay between major EMT regulators in human hepatocellular carcinoma (HCC). Reduced E-cadherin and nonmembranous -catenin expression, the hallmarks of EMT, were shown in 60.2% and 51.5% of primary HCC samples, respectively. Overexpression of Snail, Twist, or Slug, the major regulators of EMT, was identified in 56.9%, 43.1%, and 51.4% of primary HCCs, respectively. Statistical analysis determined that Snail and Twist, but not Slug, are major EMT inducers in HCC: overexpression of Snail and/or Twist correlated with down-regulation of E-cadherin, nonmembranous expression of -catenin, and a worse prognosis. In contrast, there were no such significant differences in samples that overexpressed Slug. Coexpression of Snail and Twist correlated with the worst prognosis of HCC. Hepatitis Cassociated HCC was significantly correlated with Twist overexpression. HCC cell lines with increased Snail and Twist expression (e.g., Mahlavu) exhibited a greater capacity for invasiveness/metastasis than cells with low endogenous Twist/Snail expression (e.g., Huh-7). Overexpression of Snail or/and Twist in Huh-7 induced EMT and invasiveness/metastasis, whereas knockdown of Twist or Snail in Mahlavu reversed EMT and inhibited invasiveness/metastasis. Twist and Snail were independently regulated, but exerted an additive inhibitory effect to suppress E-cadherin transcription. Conclusion: Our study provides a comprehensive profile of EMT markers in HCC, and the independent and collaborative effects of Snail and Twist on HCC metastasis were confirmed through different assays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.