HDL and apoA-I exhibit an antiinflammatory effect on human monocytes by inhibiting activation of CD11b. ApoA-I acts through ABCA1, whereas HDL may act through several receptors.
Background-In diabetes mellitus, vascular complications such as atherosclerosis are a major cause of death. The key underlying pathomechanisms are unclear. However, hyperglycemic oxidative stress derived from NADPH oxidase (Nox), the only known dedicated enzyme to generate reactive oxygen species appears to play a role. Here we identify the Nox1 isoform as playing a key and pharmacologically targetable role in the accelerated development of diabetic atherosclerosis. Methods and Results-Human aortic endothelial cells exposed to hyperglycemic conditions showed increased expression of Nox1, oxidative stress, and proinflammatory markers in a Nox1-siRNA reversible manner. Similarly, the specific Nox inhibitor, GKT137831, prevented oxidative stress in response to hyperglycemia in human aortic endothelial cells. To examine these observations in vivo, we investigated the role of Nox1 on plaque development in apolipoprotein E-deficient mice 10 weeks after induction of diabetes mellitus. Deletion of Nox1, but not Nox4, had a profound antiatherosclerotic effect correlating with reduced reactive oxygen species formation, attenuation of chemokine expression, vascular adhesion of leukocytes, macrophage infiltration, and reduced expression of proinflammatory and profibrotic markers. Similarly, treatment of diabetic apolipoprotein E-deficient mice with GKT137831 attenuated atherosclerosis development. Conclusions-These studies identify a major pathological role for Nox1 and suggest that Nox1-dependent oxidative stress is a promising target for diabetic vasculopathies, including atherosclerosis.
Abstract-C-reactive protein (CRP) is a predictor of cardiovascular risk. It circulates as a pentamer (pentameric CRP) in plasma. The in vivo existence of monomeric (m)CRP has been postulated, but its function and source are not clear. We show that mCRP is deposited in human aortic and carotid atherosclerotic plaques but not in healthy vessels. pCRP is found neither in healthy nor in diseased vessels. As source of mCRP, we identify a mechanism of dissociation of pCRP to mCRP. We report that activated platelets, which play a central role in cardiovascular events, mediate this dissociation via lysophosphatidylcholine, which is present on activated but not resting platelets. Furthermore, the dissociation of pCRP to mCRP can also be mediated by apoptotic monocytic THP-1 and Jurkat T cells. The functional consequence is the unmasking of proinflammatory effects of CRP as demonstrated in experimental settings that are pathophysiologically relevant for atherogenesis: compared to pCRP, mCRP induces enhanced monocyte chemotaxis; monocyte activation, as determined by conformational change of integrin Mac-1; generation of reactive oxygen species; and monocyte adhesion under static and physiological flow conditions. In conclusion, we demonstrate mCRP generation via pCRP dissociation on activated platelets and H 2 O 2 -treated apoptotic THP-1 and Jurkat T cells, thereby identifying a mechanism of localized unmasking of the proinflammatory properties of CRP. This novel mechanism provides a potential link between the established cardiovascular risk marker, circulating pCRP, and localized platelet-mediated inflammatory and proatherogenic effects. Key Words: C-reactive protein Ⅲ atherosclerosis Ⅲ platelets C -reactive protein (CRP) is a highly conserved protein of the pentraxin family that consists of 5 noncovalently linked subunits of Ϸ23 kDa. It is mainly produced in the liver, but under certain conditions can also be secreted by smooth muscle cells 1 and endothelial cells. 2 It was first discovered as an acute phase reactant, with plasma levels increasing from a baseline level of 1 to 2 g/mL up to 100-to 1000-fold within 24 to 72 hours. Because of this rapid cytokinedriven response to tissue injury, infection, and inflammation, CRP is seen as the prototypic inflammatory marker.Small, 2-to 5-fold increases in the baseline level of plasma CRP in asymptomatic individuals have been associated with an increased risk for cardiovascular events such as stroke and myocardial infarction. 3,4 In the recently published Jupiter trial, mildly elevated CRP levels were used to guide primary prevention, resulting in a significant reduction of major cardiovascular events in apparently healthy individuals. 5 Although the exact role of CRP in atherosclerosis and its complications are unknown, evidence is now emerging to suggest that it may be a direct, causative factor. 6,7 In vitro, CRP has been reported to increase interleukin-8 production in monocytes, 8 inhibit endothelial nitric oxide synthase, 9 alter the antioxidant defenses, and promote...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.