This work documents version two of the Department of Energy's Energy Exascale Earth SystemModel (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid-latitudes and 30 km at the equator and poles. The model performance is evaluated with Coupled Model Intercomparison Project Phase 6 Diagnosis, Evaluation, and Characterization of Klima simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate has many realistic features of the climate system, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Program assessment. However, a number of important biases remain including a weak Atlantic Meridional Overturning Circulation, deficiencies in the characteristics and spectral distribution of tropical atmospheric variability, and a significant underestimation of the observed warming in the second half of the historical period. An analysis of single-forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol-related forcing.
This paper describes the first implementation of the Δx = 3.25 km version of the Energy Exascale Earth System Model (E3SM) global atmosphere model and its behavior in a 40‐day prescribed‐sea‐surface‐temperature simulation (January 20 through February 28, 2020). This simulation was performed as part of the DYnamics of the Atmospheric general circulation Modeled On Non‐hydrostatic Domains (DYAMOND) Phase 2 model intercomparison. Effective resolution is found to be the horizontal dynamics grid resolution despite using a coarser grid for physical parameterizations. Despite this new model being in an immature and untuned state, moving to 3.25 km grid spacing solves several long‐standing problems with the E3SM model. In particular, Amazon precipitation is much more realistic, the frequency of light and heavy precipitation is improved, agreement between the simulated and observed diurnal cycle of tropical precipitation is excellent, and the vertical structure of tropical convection and coastal stratocumulus look good. In addition, the new model is able to capture the frequency and structure of important weather events (e.g., tropical cyclones, extratropical cyclones including atmospheric rivers, and cold air outbreaks). Interestingly, this model does not get rid of the erroneous southern branch of the intertropical convergence zone nor the tendency for strongest convection to occur over the Maritime Continent rather than the West Pacific, both of which are classic climate model biases. Several other problems with the simulation are identified, underscoring the fact that this model is a work in progress.
Abstract. Parallel programming models on large-scale systems require a scalable system for managing the processes that make up the execution of a parallel program. The process-management system must be able to launch millions of processes quickly when starting a parallel program and must provide mechanisms for the processes to exchange the information needed to enable them communicate with each other. MPICH2 and its derivatives achieve this functionality through a carefully defined interface, called PMI, that allows different process managers to interact with the MPI library in a standardized way. In this paper, we describe the features and capabilities of PMI. We describe both PMI-1, the current generation of PMI used in MPICH2 and all its derivatives, as well as PMI-2, the second-generation of PMI that eliminates various shortcomings in PMI-1. Together with the interface itself, we also describe a reference implementation for both PMI-1 and PMI-2 in a new processmanagement framework within MPICH2, called Hydra, and compare their performance in running MPI jobs with thousands of processes.
Because the processes controlling Earth's weather and its climatology are complex and inter-related, numerical models are a critical tool for predicting future conditions. Global coverage is necessary because local behavior propagates rapidly to distant areas of the globe. Simulating the whole planet imposes severe computational challenges, however. In the past, this has typically been handled by coarsening model grid spacing until simulations became affordable on the machines of the time. As of 2020, this translated to horizontal grid spacing of ∼10 km for weather models (which simulate days to weeks at a time) and ∼100 km for climate models (which are typically run for centuries). These grid spacings are too coarse to capture many important atmospheric processes.The impacts of sub-grid scale processes on model climate are instead parameterized based on available grid-scale quantities. Typical parameterized processes include turbulent transport and mixing, gravity-wave
This work documents version two of the Department of Energy's Energy Exascale Earth System Model (E3SM). E3SM version 2 (E3SMv2) is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.