This study examined the effects of dietary alpha-linolenic acid [18:3(n-3)] deficiency on dopaminergic serotoninergic neurotransmission systems in 60-d-old male rats. Rats were fed semipurified diets containing either peanut oil [the (n-3)-deficient group] or peanut plus rapeseed oil (control group). We measured the densities of the serotonin-2 (5-HT2) receptors and the dopamine-2 (D2) receptors by autoradiography and membrane-binding assays in relation to the fatty acid composition and levels of endogenous monoamines in three cerebral regions: the frontal cortex, the striatum and the cerebellum. Long-term feeding of the (n-3)-deficient diet induced a significantly higher 5-HT2 receptor density in the frontal cortex compared with the control rats without any difference in the endogenous serotonin concentrations. The results also showed some modification of dopaminergic neurotransmission specifically in the frontal cortex in the rats deficient in alpha-linolenic acid, with a significantly lower density of D2 receptors and a significantly lower concentration of endogenous dopamine than in control animals. Moreover, there were lower levels of (n-3) fatty acids in all the regions studied in the deficient rats, balanced by greater levels of (n-6) fatty acids. These results suggest that chronic consumption of an alpha-linolenic acid-deficient diet could induce modifications of the neurotransmission pathways; this might induce the behavioral disturbances previously described in this fatty acid-deficient animal model.
We studied the effects of a fish oil enriched diet on fatty acid composition of cerebral membranes and on several neurochemical and behavioral variables of monoaminergic function in rats. The frontal cortex, striatum, hippocampus and cerebellum were studied in rats fed fish oil (FPO, 50% salmon oil + 50% palm oil), which provided an (n-6)/(n-3) polyunsaturated fatty acid (PUFA) ratio of 0.14 versus 6. 19 in controls fed a diet containing a mixture of African peanut oil and rapeseed oil. In the FPO group compared to the control group, the major modifications in fatty acid composition of cerebral membranes included the following: higher levels in 22:6(n-3), lower levels in 20:4(n-6) and a significantly greater proportion of phosphatidylserine. Dopamine levels were 40% greater in the frontal cortex of rats fed FPO than from those fed the control diet. In this cerebral region there was also a reduction in monoamine oxidase B (MAO-B) activity and greater binding to dopamine D2 receptors. By contrast, a lower binding to dopamine D2 receptors (-7%) was observed in the striatum. Ambulatory activity was also reduced in FPO-fed rats, possibly related to observed changes in striatal dopaminergic receptors. This suggested that the level of (n-6) PUFA, which was considerably lower in the FPO diet than in the control diet, could act on locomotion through an effect on striatal dopaminergic function, whereas the high level of (n-3) PUFA could act on cortical dopaminergic function.
The effects of a-Iinolenic acid diet deficiency on rat doparninergic and serotoninergic neurotransrnission systems were investigated in the frontal cortex, striaturn, and cerebellum of male rats 2, 6, 12, and 24 months of age. The diet deficiency induced a severe decrease in the 22:6n-3 fatty acid levels in all regions and a compensatory increase in n-6 fatty acid levels. A recovery in the levels of 22:6n-3 was observed in deficient rats between 2 and 12 months of age; however, this recovery was lower in frontal cortex than in striatum and cerebellum. In the striaturn and the cerebellum, dopaminergic and serotoninergic receptor densities and endogenous doparnine and serotonin levels were affected by aging regardless of the diet. In contrast, a 40-75% lower level of endogenous dopamine in the frontal cortex occurred in deficient rats according to age. The deficiency also induced an 18-46% increase in serotonin 5-HT 2 receptor density in the frontal cortex during aging, without variation in endogenous serotonin level, and a 10% reduction in density of dopaminergic D2 receptors. Monoamine oxidase-A and -B activities showed specific age-related variations but regardless of the diet. Our results suggest that a chronically a-linolenic-deficient diet specifically affects the monoaminergic systems in the frontal cortex.
We explored the effects of chronic a-linolenic acid dietary deficiency on serotoninergic neurotransmission. In vivo synaptic serotonin (5-HT) levels were studied in basal and pharmacologically stimulated conditions using intracerebral microdialysis in the hippocampus of awake 2-month-old rats. We also studied the effects of reversion of the deficient diet on fatty acid composition and serotoninergic neurotransmission. A balanced (control) diet was supplied to deficient rats at different stages of development, i.e. from birth, 7, 14 or 21 days of age. We demonstrated that chronic n-3 polyunsaturated fatty acid dietary deficiency induced changes in the synaptic levels of 5-HT both in basal conditions and after pharmacological stimulation with fenfluramine. Higher levels of basal 5-HT release and lower levels of 5-HT-stimulated release were found in deficient than in control rats. These neurochemical modifications were reversed by supply of the balanced diet provided at birth or during the first 2 weeks of life through the maternal milk, whereas they persisted if the balanced diet was given from weaning (at 3 weeks of age). This suggests that provision of essential fatty acids is durably able to affect brain function and that this is related to the developmental stage during which the deficiency occurs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.