Purified human mucins from different parts of the intestinal tract (ileum, cecum, transverse and sigmoid colon and rectum) were isolated from two individuals with blood group ALe(b) (A-Lewis(b)). After alkaline borohydride treatment the released oligosaccharides were structurally characterized by nano-ESI Q-TOF MS/MS (electrospray ionization quadrupole time-of-flight tandem MS) without prior fractionation or derivatization. More than 100 different oligosaccharides, with up to ten monosaccharide residues, were identified using this technique. Oligosaccharides based on core 3 structures, GlcNAc(beta1-3)GalNAc (where GlcNAc is N-acetyl-D-glucosamine and GalNAc is N-acetylgalactosamine), were widely distributed in human intestinal mucins. Core 5 structures, GalNAc(alpha1-3)GalNAc, were also recovered in all fractions. Moreover, a comparison of the oligosaccharide repertoire, with respect to size, diversity and expression of glycans and terminal epitopes, showed a high level of mucin-specific glycosylation: highly fucosylated glycans, found specifically in the small intestine, were mainly based on core 4 structures, GlcNAc-(beta1-3)[GlcNAc(beta1-6)]GalNAc, whereas the sulpho-Le(X) determinant carrying core 2 glycans, Gal(beta1-3)[GlcNAc(beta1-6)]-GalNAc (where Gal is galactose), was recovered mainly in the distal colon. Blood group H and A antigenic determinants were present exclusively in the ileum and cecum, whereas blood group Sd(a)/Cad related epitopes, GalNAc(beta1-4)[NeuAc(alpha2-3)]Gal (where NeuAc is N-acetylneuraminate), were found to increase along the length of the colon. Our findings suggest that mucins create an enormous repertoire of potential binding sites for micro-organisms that could explain the regio-specific colonization of bacteria in the human intestinal tract.
Of all protein PTMs, glycosylation is by far the most common, and is a target for proteomic research. Glycosylation plays key roles in controlling various cellular processes and the modifications of the glycan structures in diseases highlight the clinical importance of this PTM. Glycosylation analysis remains a difficult task. MS, in combination with modern separation methodologies, is one of the most powerful and versatile techniques for the structural analysis of glycoconjugates. This review describes methodologies based on MS for detailed characterization of glycoconjugates in complex biological samples at the sensitivity required for proteomic work.
In plants, N-linked glycans are processed in the Golgi apparatus to complex-type N-glycans of limited size containing a beta(1,2)-xylose and/or an alpha(1,3)-fucose residue. Larger mono- and bi-antennary N-linked complex glycans have not often been described. This study has re-examined the structure of such plant N-linked glycans, and, through both immunological and structural data, it is shown that the antennae are composed of Lewis a (Le(a)) antigens, comprising the carbohydrate sequence Gal beta 1-3[Fuc alpha 1-4]GlcNAc. Furthermore, a fucosyltransferase activity involved in the biosynthesis of this antigen was detected in sycamore cells. This is the first characterization in plants of a Lewis antigen that is usually found on cell-surface glycoconjugates in mammals and involved in recognition and adhesion processes. Le(a)-containing N-linked glycans are widely distributed in plants and highly expressed at the cell surface, which may suggest a putative function in cell/cell communication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.