Opioid receptors are G protein-coupled receptors (GPCRs) that modulate brain function at all levels of neural integration, including autonomic, sensory, emotional and cognitive processing. Mu (MOR) and delta (DOR) opioid receptors functionally interact in vivo, but whether interactions occur at circuitry, cellular or molecular levels remains unsolved. To challenge the hypothesis of MOR/DOR heteromerization in the brain, we generated redMOR/greenDOR double knock-in mice and report dual receptor mapping throughout the nervous system. Data are organized as an interactive database offering an opioid receptor atlas with concomitant MOR/DOR visualization at subcellular resolution, accessible online. We also provide co-immunoprecipitation-based evidence for receptor heteromerization in these mice. In the forebrain, MOR and DOR are mainly detected in separate neurons, suggesting system-level interactions in high-order processing. In contrast, neuronal co-localization is detected in subcortical networks essential for survival involved in eating and sexual behaviors or perception and response to aversive stimuli. In addition, potential MOR/DOR intracellular interactions within the nociceptive pathway offer novel therapeutic perspectives.Electronic supplementary materialThe online version of this article (doi:10.1007/s00429-014-0717-9) contains supplementary material, which is available to authorized users.
The neurotransmitter acetylcholine (ACh) has a crucial role in central and neuromuscular synapses of the cholinergic system. After release into the synaptic cleft, ACh is rapidly degraded by acetylcholinesterase (AChE). We have identified a mutation in the ache gene of the zebrafish, which abolishes ACh hydrolysis in homozygous animals completely. Embryos are initially motile but subsequently develop paralysis. Mutant embryos show defects in muscle fiber formation and innervation, and primary sensory neurons die prematurely. The neuromuscular phenotype in ache mutants is suppressed by a homozygous loss-of-function allele of the alpha-subunit of the nicotinic acetylcholine receptor (nAChR), indicating that the impairment of neuromuscular development is mediated by activation of nAChR in the mutant. Here we provide genetic evidence for non-classical functions of AChE in vertebrate development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.