Magnetic resonance sounding (MRS) is distinguished from other geophysical tools used for ground water investigation by the fact that it measures a magnetic resonance signal generated directly from subsurface water molecules. An alternating current pulse energizes a wire loop on the ground surface and the MRS signal is generated; subsurface water is indicated, with a high degree of reliability, by nonzero amplitude readings. Measurements with varied pulse magnitudes then reveal the depth and thickness of water saturated layers. The hydraulic conductivity of aquifers can also be estimated using boreholes for calibration. MRS can be used for both predicting the yield of water supply wells and for interpolation between boreholes, thereby reducing the number of holes required for hydrogeological modeling. An example of the practical application of MRS combined with two-dimensional electrical imaging, in the Kerbernez and Kerien catchments area of France, demonstrates the efficiency of the technique.
Groundwater in Africa supports livelihoods and poverty alleviation 1,2 , maintains vital ecosystems, and strongly influences terrestrial water and energy budgets 3. However, hydrologic processes governing groundwater recharge sustaining this resource, and their sensitivity to climatic variability, are poorly constrained 4,5. Here we show, through analysis of multi-decadal groundwater hydrographs across sub-Saharan Africa, how aridity controls the predominant recharge processes whereas local hydrogeology influences the type and sensitivity of precipitation-recharge relationships. Some humid locations show approximately linear precipitation-recharge relationships with small rainfall intensity exceedance thresholds governing recharge; others show surprisingly small variation in recharge across a wide range of annual precipitation. As aridity increases, precipitation thresholds governing initiation of recharge increase, recharge becomes more episodic, and focussed recharge via losses from ephemeral overland flows becomes increasingly dominant. Extreme annual recharge is commonly associated with intense rainfall and flooding events, themselves often driven by largescale climate controls. Intense precipitation, even during lower precipitation years, produces substantial recharge in some dry subtropical locations, challenging the 'high certainty' consensus that drying climatic trends will decrease water resources in such regions 4. The likely resilience of groundwater in many areas revealed by improved understanding of precipitation-recharge
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.