Neurotransmitter receptors support the propagation of signals in the human brain. How receptor systems are situated within macro-scale neuroanatomy and how they shape emergent function remain poorly understood, and there exists no comprehensive atlas of receptors. Here we collate positron emission tomography data from more than 1,200 healthy individuals to construct a whole-brain three-dimensional normative atlas of 19 receptors and transporters across nine different neurotransmitter systems. We found that receptor profiles align with structural connectivity and mediate function, including neurophysiological oscillatory dynamics and resting-state hemodynamic functional connectivity. Using the Neurosynth cognitive atlas, we uncovered a topographic gradient of overlapping receptor distributions that separates extrinsic and intrinsic psychological processes. Finally, we found both expected and novel associations between receptor distributions and cortical abnormality patterns across 13 disorders. We replicated all findings in an independently collected autoradiography dataset. This work demonstrates how chemoarchitecture shapes brain structure and function, providing a new direction for studying multi-scale brain organization.
Compelling experimental evidence suggests that microglial activation is involved in the spread of tau tangles over the neocortex in Alzheimer's disease (AD). We tested the hypothesis that the spatial propagation of microglial activation and tau accumulation colocalize in a Braak-like pattern in the living human brain. We studied 130 individuals across the aging and AD clinical spectrum with positron emission tomography brain imaging for microglial activation ([11C]PBR28), amyloid-β (Aβ) ([18F]AZD4694) and tau ([18F]MK-6240) pathologies. We further assessed microglial triggering receptor expressed on myeloid cells 2 (TREM2) cerebrospinal fluid (CSF) concentrations and brain gene expression patterns. We found that [11C]PBR28 correlated with CSF soluble TREM2 and showed regional distribution resembling TREM2 gene expression. Network analysis revealed that microglial activation and tau correlated hierarchically with each other following Braak-like stages. Regression analysis revealed that the longitudinal tau propagation pathways depended on the baseline microglia network rather than the tau network circuits. The co-occurrence of Aβ, tau and microglia abnormalities was the strongest predictor of cognitive impairment in our study population. Our findings support a model where an interaction between Aβ and activated microglia sets the pace for tau spread across Braak stages.
Braak stages of tau neurofibrillary tangle accumulation have been incorporated in the criteria for the neuropathological diagnosis of Alzheimer’s disease. It is expected that Braak staging using brain imaging can stratify living individuals according to their individual patterns of tau deposition, which may prove crucial for clinical trials and practice. However, previous studies using the first-generation tau PET agents have shown a low sensitivity to detect tau pathology in areas corresponding to early Braak histopathological stages (∼20% of cognitively unimpaired elderly with tau deposition in regions corresponding to Braak I–II), in contrast to ∼80–90% reported in post-mortem cohorts. Here, we tested whether the novel high affinity tau tangles tracer 18F-MK-6240 can better identify individuals in the early stages of tau accumulation. To this end, we studied 301 individuals (30 cognitively unimpaired young, 138 cognitively unimpaired elderly, 67 with mild cognitive impairment, 54 with Alzheimer’s disease dementia, and 12 with frontotemporal dementia) with amyloid-β 18F-NAV4694, tau 18F-MK-6240, MRI, and clinical assessments. 18F-MK-6240 standardized uptake value ratio images were acquired at 90–110 min after the tracer injection. 18F-MK-6240 discriminated Alzheimer’s disease dementia from mild cognitive impairment and frontotemporal dementia with high accuracy (∼85–100%). 18F-MK-6240 recapitulated topographical patterns consistent with the six hierarchical stages proposed by Braak in 98% of our population. Cognition and amyloid-β status explained most of the Braak stages variance (P < 0.0001, R2 = 0.75). No single region of interest standardized uptake value ratio accurately segregated individuals into the six topographic Braak stages. Sixty-eight per cent of the cognitively unimpaired elderly amyloid-β-positive and 37% of the cognitively unimpaired elderly amyloid-β-negative subjects displayed tau deposition, at least in the transentorhinal cortex (Braak I). Tau deposition solely in the transentorhinal cortex was associated with an elevated prevalence of amyloid-β, neurodegeneration, and cognitive impairment (P < 0.0001). 18F-MK-6240 deposition in regions corresponding to Braak IV–VI was associated with the highest prevalence of neurodegeneration, whereas in Braak V–VI regions with the highest prevalence of cognitive impairment. Our results suggest that the hierarchical six-stage Braak model using 18F-MK-6240 imaging provides an index of early and late tau accumulation as well as disease stage in preclinical and symptomatic individuals. Tau PET Braak staging using high affinity tracers has the potential to be incorporated in the diagnosis of living patients with Alzheimer’s disease in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.