Climate models predict that the frequency, intensity and duration of drought events will increase in tropical regions. Although water withdrawal from deep soil layers is generally considered to be an efficient adaptation to drought, there is little information on the role played by deep roots in tropical forests. Tropical Eucalyptus plantations managed in short rotation cycles are simple forest ecosystems that may provide an insight into the water use by trees in tropical forests. The contribution made by water withdrawn from deep soil layers to the water required for evapotranspiration was quantified daily from planting to harvesting age for a Eucalyptus grandis stand using a soil water transfer model coupled with an ecophysiological forest model (MAESPA). The model was parameterized using an extensive data set and validated using time series of the soil water content down to a depth of 10 m and water-table level, as well as evapotranspiration measured using eddy covariance. Fast root growth after planting provided access to large quantities of water stored in deep soil layers over the first 2 years. Eucalyptus roots reached the water-table at a depth of 12 m after 2 years. Although the mean water withdrawal from depths of over 10 m amounted to only 5% of canopy transpiration from planting to a harvesting age of 5 years, the proportion of water taken up near the water-table was much higher during dry periods. The water-table rose from 18 to 12 m below-ground over 2 years after the harvest of the previous stand and then fell until harvesting age as evapotranspiration rates exceeded the annual rainfall. Deep rooting is an efficient strategy to increase the amount of water available for the trees, allowing the uptake of transient gravitational water and possibly giving access to a deep water-table. Deep soil layers have an important buffer role for large amounts of water stored during the wet season that is taken up by trees during dry periods. Our study confirms that deep rooting could be a major mechanism explaining high transpiration rates throughout the year in many tropical forests. (Résumé d'auteur
Abstract. Whilst the relationships between growth strategies and leaf traits are well established in functional plant ecology, little attention has been paid to root traits in very deep soil layers. The objective of our study was to compare the vertical velocity of the above-and belowground exploration of the environment for one of the fastest-growing tree species. Fine roots were studied in a chronosequence of intensively-managed Eucalyptus plantations established on highly weathered soils. Here we show that the root front depth was accurately predicted at 85% of mean tree height for stands ,20 m in height, in the absence of any physical or chemical barrier. Tree height and root front growth velocities peaked at 0.59 and 0.55 m month À1 respectively 9-10 months after planting, and decreased steadily thereafter. Fast root front displacement might provide a competitive advantage to fast-growing species in forests established on deep soils. Our study may contribute to the debate on the environmental impact of short-rotation plantation forests in the Tropics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.