In humans and rodents the adult spinal cord harbors neural stem cells located around the central canal. Their identity, precise location, and specific signaling are still ill-defined and controversial. We report here on a detailed analysis of this niche. Using microdissection and glial fibrillary acidic protein (GFAP)-green fluorescent protein (GFP) transgenic mice, we demonstrate that neural stem cells are mostly dorsally located GFAP(+) cells lying ependymally and subependymally that extend radial processes toward the pial surface. The niche also harbors doublecortin protein (Dcx)(+) Nkx6.1(+) neurons sending processes into the lumen. Cervical and lumbar spinal cord neural stem cells maintain expression of specific rostro-caudal Hox gene combinations and the niche shows high levels of signaling proteins (CD15, Jagged1, Hes1, differential screening-selected gene aberrative in neuroblastoma [DAN]). More surprisingly, the niche displays mesenchymal traits such as expression of epithelial-mesenchymal-transition zinc finger E-box-binding protein 1 (ZEB1) transcription factor and smooth muscle actin. We found ZEB1 to be essential for neural stem cell survival in vitro. Proliferation within the niche progressively ceases around 13 weeks when the spinal cord reaches its final size, suggesting an active role in postnatal development. In addition to hippocampus and subventricular zone niches, adult spinal cord constitutes a third central nervous system stem cell niche with specific signaling, cellular, and structural characteristics that could possibly be manipulated to alleviate spinal cord traumatic and degenerative diseases.
Low-threshold mechanoreceptor neurons (LTMs) of the dorsal root ganglia (DRG) are essential for touch sensation. They form highly specialized terminations in the skin and display stereotyped projections in the spinal cord. Functionally defined LTMs depend on neurotrophin signaling for their postnatal survival and functioning, but how these neurons arise during development is unknown. Here, we show that specific types of LTMs can be identified shortly after DRG genesis by unique expression of the MafA transcription factor, the Ret receptor and coreceptor GFRalpha2, and find that their specification is Ngn2 dependent. In mice lacking Ret, these LTMs display early differentiation defects, as revealed by reduced MafA expression, and at later stages their central and peripheral projections are compromised. Moreover, in MafA mutants, a discrete subset of LTMs display altered expression of neurotrophic factor receptors. Our results provide evidence that genetic interactions involving Ret and MafA progressively promote the differentiation and diversification of LTMs.
and Frédérique Scamps. Axotomy-induced expression of calciumactivated chloride current in subpopulations of mouse dorsal root ganglion neurons. J Neurophysiol 90: 3764 -3773, 2003. First published August 27, 2003 10.1152/jn.00449.2003. Whole cell patchclamp recordings of calcium-activated chloride current [I Cl(Ca) ] were made from adult sensory neurons of naive and axotomized mouse L 4 -L 6 lumbar dorsal root ganglia after 1 day of culture in vitro. A basal I Cl(Ca) was specifically expressed in a subset of naive mediumdiameter neurons (30 -40 m). Prior nerve injury, induced by sciatic nerve transection 5 days before experiments, increased both I Cl(Ca) amplitude and its expression in medium-diameter neurons. Moreover, nerve injury also induced I Cl(Ca) expression in a new subpopulation of neurons, the large-diameter neurons (40 -50 m). Small-diameter neurons (inferior to 30 m) never expressed I Cl(Ca) . Regulated I Cl(Ca) expression was strongly correlated with injury-induced regenerative growth of sensory neurons in vitro and nerve regeneration in vivo. Cell culture on a substrate not permissive for growth, D,L-polyornithine, prevented both elongation growth and I Cl(Ca) expression in axotomized neurons. Regenerative growth and the induction of I Cl(Ca) expression take place 2 days after injury, peak after 5 days of conditioning in vivo, slowly declining thereafter to control values. The selective expression of I Cl(Ca) within medium-and large-diameter neurons conditioned for rapid, efficient growth suggests that these channels play a specific role in postinjury behavior of sensory neuron subpopulations such as neuropathic pain and/or axonal regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.