M. BOUCHEZ-NAÏTALI, H. RAKATOZAFY, R. MARCHAL, J.-Y. LEVEAU AND J.-P.V AN DE C AS TE E LE . 1999. The relative distribution of the modes of hydrocarbon uptake, used by bacteria of the environment for the degradation of long-chain alkanes, has been evaluated. The first mode of uptake, direct interfacial accession, involves contact of cells with hydrocarbon droplets. In the second mode, biosurfactant-mediated transfer, cell contact takes place with hydrocarbons emulsified or solubilized by biosurfactants. Sixty-one strains growing on hexadecane were isolated from polluted and non-polluted soils and identified. The majority (61%) belonged to the CorynebacteriumMycobacterium-Nocardia group. Criteria selected for characterizing hexadecane uptake were cell hydrophobicity, interfacial and surface tensions and production of glycolipidic extracellular biosurfactants. These properties were determined in flask cultures on an insoluble (hexadecane) and on a soluble (glycerol or succinate) carbon source for a subset of 23 representative strains. Exclusive direct interfacial uptake was utilized by 47% of studied strains. A large proportion of strains (53%) produced biosurfactants. The data on cellular hydrophobicity suggested the existence of two distinct alkane transfer mechanisms in this group. Accordingly, tentative assignments of biosurfactant-mediated micellar transfer were made for 11% of the isolated strains, and of biosurfactant-enhanced interfacial uptake for 42%.
We monitored the dynamic changes in the bacterial population in milk associated with refrigeration. Direct analyses of DNA by using temporal temperature gel electrophoresis (TTGE) and denaturing gradient gel electrophoresis (DGGE) allowed us to make accurate species assignments for bacteria with low-GC-content (low-GC%) (<55%) and medium- or high-GC% (>55%) genomes, respectively. We examined raw milk samples before and after 24-h conservation at 4°C. Bacterial identification was facilitated by comparison with an extensive bacterial reference database (∼150 species) that we established with DNA fragments of pure bacterial strains. Cloning and sequencing of fragments missing from the database were used to achieve complete species identification. Considerable evolution of bacterial populations occurred during conservation at 4°C. TTGE and DGGE are shown to be a powerful tool for identifying the main bacterial species of the raw milk samples and for monitoring changes in bacterial populations during conservation at 4°C. The emergence of psychrotrophic bacteria such as Listeria spp. or Aeromonas hydrophila is demonstrated
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.