Interleukin (IL)-23 is a heterodimeric cytokine composed of a unique p19 subunit, and a common p40 subunit shared with IL-12. IL-12 is important for the development of T helper (Th)1 cells that are essential for host defense and tumor suppression. In contrast, IL-23 does not promote the development of interferon-γ–producing Th1 cells, but is one of the essential factors required for the expansion of a pathogenic CD4+ T cell population, which is characterized by the production of IL-17, IL-17F, IL-6, and tumor necrosis factor. Gene expression analysis of IL-23–driven autoreactive T cells identified a unique expression pattern of proinflammatory cytokines and other novel factors, distinguishing them from IL-12–driven T cells. Using passive transfer studies, we confirm that these IL-23–dependent CD4+ T cells are highly pathogenic and essential for the establishment of organ-specific inflammation associated with central nervous system autoimmunity.
T(H)-17 cells are a distinct lineage of proinflammatory T helper cells that are essential for autoimmune disease. In mice, commitment to the T(H)-17 lineage is dependent on transforming growth factor-beta and interleukin 6 (IL-6). Here we demonstrate that IL-23 and IL-1beta induced the development of human T(H)-17 cells expressing IL-17A, IL-17F, IL-22, IL-26, interferon-gamma, the chemokine CCL20 and transcription factor RORgammat. In situ, T(H)-17 cells were identified by expression of the IL-23 receptor and the memory T cell marker CD45RO. Psoriatic skin lesions contained IL-23-producing dendritic cells and were enriched in the cytokines produced by human T(H)-17 cells that promote the production of antimicrobial peptides in human keratinocytes. Our data collectively indicate that human and mouse T(H)-17 cells require distinct factors during differentiation and that human T(H)-17 cells may regulate innate immunity in epithelial cells.
An efficient Th1-driven adaptive immune response requires activation of the T cell receptor and secretion of the T cell stimulatory cytokine IL-12 by activated antigen-presenting cells. IL-12 triggers Th1 polarization of naive CD4(+) T cells and secretion of IFN-gamma. We describe a new heterodimeric cytokine termed IL-27 that consists of EBI3, an IL-12p40-related protein, and p28, a newly discovered IL-12p35-related polypeptide. IL-27 is an early product of activated antigen-presenting cells and drives rapid clonal expansion of naive but not memory CD4(+) T cells. It also strongly synergizes with IL-12 to trigger IFN-gamma production of naive CD4(+) T cells. IL-27 mediates its biologic effects through the orphan cytokine receptor WSX-1/TCCR.
Chronic inflammation has long been associated with increased incidence of malignancy and similarities in the regulatory mechanisms have been suggested for more than a century. Infiltration of innate immune cells, elevated activities of matrix metalloproteases and increased angiogenesis and vasculature density are a few examples of the similarities between chronic and tumour-associated inflammation. Conversely, the elimination of early malignant lesions by immune surveillance, which relies on the cytotoxic activity of tumour-infiltrating T cells or intra-epithelial lymphocytes, is thought to be rate-limiting for the risk to develop cancer. Here we show a molecular connection between the rise in tumour-associated inflammation and a lack of tumour immune surveillance. Expression of the heterodimeric cytokine interleukin (IL)-23, but not of its close relative IL-12, is increased in human tumours. Expression of these cytokines antagonistically regulates local inflammatory responses in the tumour microenvironment and infiltration of intra-epithelial lymphocytes. Whereas IL-12 promotes infiltration of cytotoxic T cells, IL-23 promotes inflammatory responses such as upregulation of the matrix metalloprotease MMP9, and increases angiogenesis but reduces CD8 T-cell infiltration. Genetic deletion or antibody-mediated elimination of IL-23 leads to increased infiltration of cytotoxic T cells into the transformed tissue, rendering a protective effect against chemically induced carcinogenesis. Finally, transplanted tumours are growth-restricted in hosts depleted for IL-23 or in IL-23-receptor-deficient mice. Although many strategies for immune therapy of cancer attempt to stimulate an immune response against solid tumours, infiltration of effector cells into the tumour tissue often appears to be a critical hurdle. We show that IL-23 is an important molecular link between tumour-promoting pro-inflammatory processes and the failure of the adaptive immune surveillance to infiltrate tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.