The accurate measurement of blood pressure (BP) is essential for the diagnosis and management of hypertension. This article provides an updated American Heart Association scientific statement on BP measurement in humans. In the office setting, many oscillometric devices have been validated that allow accurate BP measurement while reducing human errors associated with the auscultatory approach. Fully automated oscillometric devices capable of taking multiple readings even without an observer being present may provide a more accurate measurement of BP than auscultation. Studies have shown substantial differences in BP when measured outside versus in the office setting. Ambulatory BP monitoring is considered the reference standard for out-of-office BP assessment, with home BP monitoring being an alternative when ambulatory BP monitoring is not available or tolerated. Compared with their counterparts with sustained normotension (ie, nonhypertensive BP levels in and outside the office setting), it is unclear whether adults with white-coat hypertension (ie, hypertensive BP levels in the office but not outside the office) have increased cardiovascular disease risk, whereas those with masked hypertension (ie, hypertensive BP levels outside the office but not in the office) are at substantially increased risk. In addition, high nighttime BP on ambulatory BP monitoring is associated with increased cardiovascular disease risk. Both oscillometric and auscultatory methods are considered acceptable for measuring BP in children and adolescents. Regardless of the method used to measure BP, initial and ongoing training of technicians and healthcare providers and the use of validated and calibrated devices are critical for obtaining accurate BP measurements.
Background Obesity and its cardiovascular complications are extremely common medical problems, but evidence on how to accomplish weight loss in clinical practice is sparse. Methods We conducted a randomized, controlled trial to examine the effects of two behavioral weight-loss interventions in 415 obese patients with at least one cardiovascular risk factor. Participants were recruited from six primary care practices; 63.6% were women, 41.0% were black, and the mean age was 54.0 years. One intervention provided patients with weight-loss support remotely — through the telephone, a study-specific Web site, and e-mail. The other intervention provided in-person support during group and individual sessions, along with the three remote means of support. There was also a control group in which weight loss was self-directed. Outcomes were compared between each intervention group and the control group and between the two intervention groups. For both interventions, primary care providers reinforced participation at routinely scheduled visits. The trial duration was 24 months. Results At baseline, the mean body-mass index (the weight in kilograms divided by the square of the height in meters) for all participants was 36.6, and the mean weight was 103.8 kg. At 24 months, the mean change in weight from baseline was −0.8 kg in the control group, −4.6 kg in the group receiving remote support only (P<0.001 for the comparison with the control group), and −5.1 kg in the group receiving in-person support (P<0.001 for the comparison with the control group). The percentage of participants who lost 5% or more of their initial weight was 18.8% in the control group, 38.2% in the group receiving remote support only, and 41.4% in the group receiving in-person support. The change in weight from baseline did not differ significantly between the two intervention groups. Conclusions In two behavioral interventions, one delivered with in-person support and the other delivered remotely, without face-to-face contact between participants and weight-loss coaches, obese patients achieved and sustained clinically significant weight loss over a period of 24 months. (Funded by the National Heart, Lung, and Blood Institute and others; ClinicalTrials.gov number, NCT00783315.)
EARLY TWO-THIRDS OF US adults are overweight or obese. 1 Together overweight and obesity are the second leading cause of preventable death, primarily through effects on car-diovascular disease (CVD) risk factors (hypertension, dyslipidemia, and type 2 diabetes). 2 Weight loss improves these risk factors, and evidence suggests that benefits persist as long as weight loss is maintained. [3][4][5][6][7][8] Relatively short-term (ie, 4-6 months) behavioral interventions for adults re-sult in clinically significant weight loss, but regain is an intractable problem. [9][10][11] Given the vast scope of the over-Author Affiliations are listed at the end of this article.
ESPITE WIDESPREAD CONSENsus that a reduced intake of saturated fat lowers cardiovascular disease (CVD) risk, the optimal type of macronutrient (protein, unsaturated fat, or carbohydrate) that should replace saturated fat is uncertain. In the absence of convincing evidence that favors one macronutrient, reports from the Institute of Medicine 1 and the Adult Treatment Panel III 2 concluded that a wide range of macronutrients is acceptable.Two major goals of dietary recommendations are to lower blood pressure and improve serum lipids, 2 of the primary determinants of CVD risk. A persuasive body of evidence has impli-cated several aspects of diet in the etiology of elevated blood pressure. Early research documented the adverse effects of increased salt, insufficient potassium, elevated weight, and excess alcohol intake, and the beneficial effects of vegetarian dietary patterns. 3,4 Subsequently, in the Dietary Approaches to Stop Hypertension (DASH) trials, 5,6 a carbohydrate-rich diet that emphasizes fruits, vegetables, and low-fat dairy prod-For editorial comment see p 2497.
BACKGROUND In observational studies, the relationship between blood pressure and end-stage renal disease (ESRD) is direct and progressive. The burden of hypertension-related chronic kidney disease and ESRD is especially high among black patients. Yet few trials have tested whether intensive blood-pressure control retards the progression of chronic kidney disease among black patients. METHODS We randomly assigned 1094 black patients with hypertensive chronic kidney disease to receive either intensive or standard blood-pressure control. After completing the trial phase, patients were invited to enroll in a cohort phase in which the blood-pressure target was less than 130/80 mm Hg. The primary clinical outcome in the cohort phase was the progression of chronic kidney disease, which was defined as a doubling of the serum creatinine level, a diagnosis of ESRD, or death. Follow-up ranged from 8.8 to 12.2 years. RESULTS During the trial phase, the mean blood pressure was 130/78 mm Hg in the intensive-control group and 141/86 mm Hg in the standard-control group. During the cohort phase, corresponding mean blood pressures were 131/78 mm Hg and 134/78 mm Hg. In both phases, there was no significant between-group difference in the risk of the primary outcome (hazard ratio in the intensive-control group, 0.91; P = 0.27). However, the effects differed according to the baseline level of proteinuria (P = 0.02 for interaction), with a potential benefit in patients with a protein-to-creatinine ratio of more than 0.22 (hazard ratio, 0.73; P = 0.01). CONCLUSIONS In overall analyses, intensive blood-pressure control had no effect on kidney disease progression. However, there may be differential effects of intensive blood-pressure control in patients with and those without baseline proteinuria. (Funded by the National Institute of Diabetes and Digestive and Kidney Diseases, the National Center on Minority Health and Health Disparities, and others.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.