A database of surface Antarctic snow isotopic composition is constructed using available measurements, with an estimate of data quality and local variability. Although more than 1000 locations are documented, the spatial coverage remains uneven with a majority of sites located in specific areas of East Antarctica. The database is used to analyze the spatial variations in snow isotopic composition with respect to geographical characteristics (elevation, distance to the coast) and climatic features (temperature, accumulation) and with a focus on deuterium excess. The capacity of theoretical isotopic, regional, and general circulation atmospheric models (including "isotopic" models) to reproduce the observed features and assess the role of moisture advection in spatial deuterium excess fluctuations is analyzed.
Crustal dust in the atmosphere impacts Earth's radiative forcing directly by modifying the radiation budget and affecting cloud nucleation and optical properties, and indirectly through ocean fertilization, which alters carbon sequestration. Increased dust in the atmosphere has been linked to decreased global air temperature in past ice core studies of glacial to interglacial transitions. We present a continuous ice core record of aluminum deposition during recent centuries in the northern Antarctic Peninsula, the most rapidly warming region of the Southern Hemisphere; such a record has not been reported previously. This record shows that aluminosilicate dust deposition more than doubled during the 20th century, coincident with the Ϸ1°C Southern Hemisphere warming: a pattern in parallel with increasing air temperatures, decreasing relative humidity, and widespread desertification in Patagonia and northern Argentina. These results have far-reaching implications for understanding the forces driving dust generation and impacts of changing dust levels on climate both in the recent past and future.aluminosilicate dust ͉ global warming ͉ human impacts ͉ Patagonia ͉ radiative transfer C rustal dust in the atmosphere has a direct impact on climate forcing in two significant ways: modifying the radiation balance and affecting cloud nucleation and optical properties (1, 2). Atmospheric crustal dust also supplies iron, an essential nutrient for phytoplankton, to ocean surface waters and may indirectly affect climate by modulating the biological export of carbon to the deep ocean (3). Impacts of atmospheric dust on regional radiation budgets are similar in magnitude to those from sulfate and biomass burning aerosols (4) but can be either negative or positive (1). Estimates of the optical properties of dust have been revised recently as a result of improved in situ and remote sensing measurements (5, 6), but warming has been predicted across areas of high albedo (7, 8) such as snow-and ice-covered regions of the Antarctic Peninsula where recent warming has been pronounced (9). Although atmospheric dustiness has been linked to large-amplitude, large-scale temperature changes in past ice core studies of glacial to interglacial transitions (10, 11), it is unclear whether projected climate warming in coming decades to centuries will result in more or less atmospheric dust (12). Decadal changes in dust flux have been reported for ice cores from the Antarctic Peninsula (13, 14), but reliable, high-time-resolution records of changes in dust levels during recent decades and centuries are sparse (15).Ice core records offer the possibility of reconstructing past changes in dust concentration (10,11,(13)(14)(15)(16)(17)(18)(19)(20). Most previous high-resolution ice core studies used as proxies of atmospheric dust the non-sea-salt component of soluble calcium (nssCa) or magnesium (nssMg) that are computed by using estimated elemental ratios in sea salt aerosols (11,19). At many ice core sites, particularly coastal locations, the nssCa ...
Antarctic and Southern Ocean science is vital to understanding natural variability, the processes that govern global change and the role of humans in the Earth and climate system. The potential for new knowledge to be gained from future Antarctic science is substantial. Therefore, the international Antarctic community came together to 'scan the horizon' to identify the highest priority scientific questions that researchers should aspire to answer in the next two decades and beyond. Wide consultation was a fundamental principle for the development of a collective, international view of the most important future directions in Antarctic science. From the many possibilities, the horizon scan identified 80 key scientific questions through structured debate, discussion, revision and voting. Questions were clustered into seven topics: i) Antarctic atmosphere and global connections, ii) Southern Ocean and sea ice in a warming world, iii) ice sheet and sea level, iv) the dynamic Earth, v) life on the precipice, vi) near-Earth space and beyond, and vii) human presence in Antarctica. Answering the questions identified by the horizon scan will require innovative experimental designs, novel applications of technology, invention of next-generation field and laboratory approaches, and expanded observing systems and networks. Unbiased, non-contaminating procedures will be required to retrieve the requisite air, biota, sediment, rock, ice and water samples. Sustained year-round access to Antarctica and the Southern Ocean will be essential to increase winter-time measurements. Improved models are needed that represent Antarctica and the Southern Ocean in the Earth System, and provide predictions at spatial and temporal resolutions useful for decision making. A co-ordinated portfolio of cross-disciplinary science, based on new models of international collaboration, will be essential as no scientist, programme or nation can realize these aspirations alone.
[1] Isotope records from Andean ice cores provide detailed and high-resolution climate information on various time scales. However, the relationship between these valuable isotope records and local or regional climate remains poorly understood. Here we present results from two new drillings in Bolivia, from the Illimani and the Sajama ice caps. All four high altitude isotope signals in the Andes now available (Huascarán, Quelccaya, Illimani and Sajama) show near identical decadal variability in the 20th century.Comparison with general circulation model results and meteorological data suggest that the Andean high altitude records are primarily controlled by precipitation variability over the Amazon basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.