Patients expressing the cytochrome P450 (CYP) 3A5 gene require a higher tacrolimus dose to achieve therapeutic exposure compared with nonexpressers. This randomized-controlled study investigated whether adaptation of the tacrolimus starting dose according to CYP3A5 genotype increases the proportion of kidney transplant recipients being within the target tacrolimus predose concentration range (10-15 ng/mL) at first steady-state. Two hundred forty living-donor, renal transplant recipients were assigned to either receive a standard, body-weightbased or a CYP3A5 genotype-based tacrolimus starting dose. At day 3, no difference in the proportion of patients having a tacrolimus exposure within the target range was observed between the standard-dose and genotype-based groups: 37.4% versus 35.6%, respectively; p = 0.79. The proportion of patients with a subtherapeutic (i.e. <10 ng/mL) or a supratherapeutic (i.e. >15 ng/mL) Tac predose concentration in the two groups was also not significantly different. The incidence of acute rejection was comparable between both groups (p = 0.82). Pharmacogenetic adaptation of the tacrolimus starting dose does not increase the number of patients having therapeutic tacrolimus exposure early after transplantation and does not lead to improved clinical outcome in a low immunological risk population.
Hydrogen sulfide (H 2 S) is an endogenous gasotransmitter with physiologic functions similar to nitric oxide and carbon monoxide. Exogenous treatment with H 2 S can induce a reversible hypometabolic state, which can protect organs from ischemia/reperfusion injury, but whether cystathionine g-lyase (CSE), which produces endogenous H 2 S, has similar protective effects is unknown. Here, human renal tissue revealed abundant expression of CSE, localized to glomeruli and the tubulointerstitium. Compared with wild-type mice, CSE knockout mice had markedly reduced renal production of H 2 S, and CSE deficiency associated with increased damage and mortality after renal ischemia/reperfusion injury. Treatment with exogenous H 2 S rescued CSE knockout mice from the injury and mortality associated with renal ischemia. In addition, overexpression of CSE in vitro reduced the amount of reactive oxygen species produced during stress. Last, the level of renal CSE mRNA at the time of organ procurement positively associated with GFR 14 days after transplantation. In summary, these results suggest that CSE protects against renal ischemia/reperfusion injury, likely by modulating oxidative stress through the production of H 2 S.
Chronic kidney disease (CKD) affects ~10% of the global population, with considerable ethnic differences in prevalence and aetiology. We assemble genome-wide association studies of estimated glomerular filtration rate (eGFR), a measure of kidney function that defines CKD, in 312,468 individuals of diverse ancestry. We identify 127 distinct association signals with homogeneous effects on eGFR across ancestries and enrichment in genomic annotations including kidney-specific histone modifications. Fine-mapping reveals 40 high-confidence variants driving eGFR associations and highlights putative causal genes with cell-type specific expression in glomerulus, and in proximal and distal nephron. Mendelian randomisation supports causal effects of eGFR on overall and cause-specific CKD, kidney stone formation, diastolic blood pressure and hypertension. These results define novel molecular mechanisms and putative causal genes for eGFR, offering insight into clinical outcomes and routes to CKD treatment development.
Dupilumab is the first biologic registered for the treatment of atopic dermatitis (AD). We report on seven patients with AD presenting with a paradoxical head and neck erythema that appeared 10-39 weeks after the start of dupilumab treatment. The patients presented with a relatively sharply demarcated, patchy erythema in the head and neck area that showed no or less scaling compared with their usual eczema. Only one patient experienced symptoms of itch and burning, although this was notably different from his pre-existent facial AD. Except for a notable 'red face', eczema on other body parts had greatly improved in six of the seven patients, with a mean numerical rating scale for treatment satisfaction of 9 out of 10 at the time of biopsy. Treatment of the erythema with topical and systemic drugs was unsuccessful. Despite the presence of this erythema, none of our patients discontinued dupilumab treatment. Lesional skin biopsies showed an increased number of ectatic capillaries, and a perivascular lymphohistiocytic infiltration in all patients. In addition, epidermal hyperplasia with elongation of the rete ridges was observed in four patients, resembling a psoriasiform dermatitis. Additional immunohistochemical stainings revealed increased numbers of plasma cells, histiocytes and T lymphocytes. Interestingly, spongiosis was largely absent in all biopsies. We report on patients with AD treated with dupilumab developing a paradoxical erythema in a head and neck distribution. Both clinically and histopathologically we found a heterogeneous response, which was most suggestive of a drug-induced skin reaction. What's already known about this topic? • Dupilumab has proven to be an efficacious and effective treatment for atopic dermatitis with an acceptable safety profile. • The most frequently observed side-effects in patients with atopic dermatitis treated with dupilumab are conjunctivitis, herpes infections and injection-site reactions. What does this study add? • For the first time, we report on patients with atopic dermatitis treated with dupilumab who developed a paradoxical, mainly asymptomatic erythema in a head and neck distribution. • Histological examination of skin biopsies revealed a psoriasiform reaction pattern suggestive of a drug-induced skin reaction.
Kim-1, a recently discovered membrane protein, is undetectable in normal kidneys but markedly induced in proximal tubules after ischemic and toxic injury. The function of Kim-1 is unclear, but it is implicated in damage/repair processes. The Kim-1 ectodomain is cleaved by metalloproteinases and detectable in urine. We studied Kim-1 in a nontoxic, nonischemic, model of tubulointerstitial damage caused by acute proteinuria. Uninephrectomized (NX) rats received daily (ip) injections of 2 g BSA (NX+BSA, n = 12) or saline (NX, n = 6) for 3 wk. Kidneys were stained for various damage markers by immunohistochemistry (IHC). Kim-1 mRNA (RT-PCR, in situ hybridization), protein (IHC, Western blotting), and urinary Kim-1 (Luminex) were determined. Spatial relations between Kim-1 and other damage markers were studied by double labeling IHC. NX+BSA rats developed massive proteinuria (1,217 ± 313 vs. 18 ± 2 mg/day in NX, P < 0.001) and significant renal damage. Kim-1 mRNA was upregulated eightfold in NX+BSA (ratio Kim-1/β-actin, 4.08 ± 2.56 vs. 0.52 ± 0.64 in NX, P < 0.001) and localized to damaged tubules. Kim-1 protein expression was markedly induced in NX+BSA (2.46 ± 1.19 vs. 0.39 ± 0.10% staining/field in NX, P < 0.001). Urinary Kim-1 was significantly elevated in NX+BSA (921 ± 592 vs. 87 ± 164 pg/ml in NX, P < 0.001) and correlated with tissue Kim-1 expression ( r = 0.66, P =0.02). Kim-1 protein was found at the apical membrane of dilated nephrons. Kim-1 expression was limited to areas with inflammation (MØ), fibrosis (α-smooth muscle actin), and tubular damage (osteopontin), and only occasionally with tubular dedifferentiation (vimentin). These results implicate involvement of Kim-1 in the pathogenesis of proteinuria-induced renal damage/repair. Urinary Kim-1 levels may serve as a marker of proteinuria-induced renal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.