Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.
Habitat destruction and overexploitation are the main threats to biodiversity and where they co‐occur, their combined impact is often larger than their individual one. Yet, detailed knowledge of the spatial footprints of these threats is lacking, including where they overlap and how they change over time. These knowledge gaps are real barriers for effective conservation planning. Here, we develop a novel approach to reconstruct the individual and combined footprints of both threats over time. We combine satellite‐based land‐cover change maps, habitat suitability models and hunting pressure models to demonstrate our approach for the community of larger mammals (48 species > 1 kg) across the 1.1 million km2 Gran Chaco region, a global deforestation hotspot covering parts of Argentina, Bolivia and Paraguay. This provides three key insights. First, we find that the footprints of habitat destruction and hunting pressure expanded considerably between 1985 and 2015, across ~40% of the entire Chaco – twice the area affected by deforestation. Second, both threats increasingly acted together within the ranges of larger mammals in the Chaco (17% increase on average, ± 20% SD, cumulative increase of co‐occurring threats across 465 000 km2), suggesting large synergistic effects. Conversely, core areas of high‐quality habitats declined on average by 38%. Third, we identified remaining priority areas for conservation in the northern and central Chaco, many of which are outside the protected area network. We also identify hotspots of high threat impacts in central Paraguay and northern Argentina, providing a spatial template for threat‐specific conservation action. Overall, our findings suggest increasing synergistic effects between habitat destruction and hunting pressure in the Chaco, a situation likely common in many tropical deforestation frontiers. Our work highlights how threats can be traced in space and time to understand their individual and combined impact, even in situations where data are sparse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.