In U.S. Pacific Northwest coho salmon (Oncorhynchus kisutch), stormwater exposure annually causes unexplained acute mortality when adult salmon migrate to urban creeks to reproduce. By investigating this phenomenon, we identified a highly toxic quinone transformation product of N-(1,3-dimethylbutyl)-N′-phenyl-p-phenylenediamine (6PPD), a globally ubiquitous tire rubber antioxidant. Retrospective analysis of representative roadway runoff and stormwater-affected creeks of the U.S. West Coast indicated widespread occurrence of 6PPD-quinone (<0.3 to 19 micrograms per liter) at toxic concentrations (median lethal concentration of 0.8 ± 0.16 micrograms per liter). These results reveal unanticipated risks of 6PPD antioxidants to an aquatic species and imply toxicological relevance for dissipated tire rubber residues.
Urban stormwater is a major threat to ecological health, causing a range of adverse, mostly sublethal effects. In western North America, urban runoff is acutely lethal to adult coho salmon ( Oncorhynchus kisutch) that spawn each fall in freshwater creeks. Although the mortality syndrome is correlated to urbanization and attributed to road runoff contaminant(s), the causal agent(s) remain unknown. We applied high-resolution mass spectrometry to isolate a coho mortality chemical signature: a list of nontarget and identified features that co-occurred in waters lethal to coho spawners (road runoff from controlled exposures and urban receiving waters from two field observations of symptomatic coho). Hierarchical cluster analysis indicated that tire wear particle (TWP) leachates were most chemically similar to the waters with observed toxicity, relative to other vehicle-derived sources. Prominent road runoff contaminants in the signature included two groups of nitrogen-containing compounds derived from TWP, polyethylene glycols, octylphenol ethoxylates, and polypropylene glycols. A (methoxymethyl)melamine compound family, previously unreported in North America, was detected in road runoff and urban creeks at concentrations up to ∼9 and ∼0.3 μg/L, respectively. The results indicate TWPs are an under-appreciated contaminant source in urban watersheds and should be prioritized for fate and toxicity assessment.
Stormwater exposure can cause acute mortality of coho salmon (Oncorhynchus kisutch), and 6PPD-quinone (6PPD-Q) was identified as the primary causal toxicant. Commercial standards of 6PPD-Q recently became available; their analysis highlighted a systematic high bias in prior reporting concerning 6PPD-Q. A 6PPD-Q commercial standard was used to re-confirm toxicity estimates in juvenile coho salmon and develop a liquid chromatography-tandem mass spectrometry analytical method for quantification. Peak area responses of the commercial standard were ∼15 times higher than those of in-house standards, and the updated LC 50 value (95 ng/L) was ∼8.3-fold lower than that previously reported. These data support prior relative comparisons of the occurrence and toxicity while confirming the substantial lethality of 6PPD-Q. While environmental concentrations are expected to be lower, 6PPD-Q also was more toxic than previously calculated and should be categorized as a "very highly toxic" pollutant for aquatic organisms. Isotope dilution-tandem mass spectrometry methods enabled accurate quantification (limits of quantification of <10 ng/L) within environmental samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.