Most biological catalysts are made of protein; however, eight classes of natural ribozymes have been discovered that catalyse fundamental biochemical reactions. The central functions of ribozymes in modern organisms support the hypothesis that life passed through an 'RNA world' before the emergence of proteins and DNA. We have identified a new class of ribozymes that cleaves the messenger RNA of the glmS gene in Gram-positive bacteria. The ribozyme is activated by glucosamine-6-phosphate (GlcN6P), which is the metabolic product of the GlmS enzyme. Additional data indicate that the ribozyme serves as a metabolite-responsive genetic switch that represses the glmS gene in response to rising GlcN6P concentrations. These findings demonstrate that ribozyme switches may have functioned as metabolite sensors in primitive organisms, and further suggest that modern cells retain some of these ancient genetic control systems.
Genes have a major role in the control of high-density lipoprotein (HDL) cholesterol (HDL-C) levels. Here we have identified two Tangier disease (TD) families, confirmed 9q31 linkage and refined the disease locus to a limited genomic region containing the gene encoding the ATP-binding cassette transporter (ABC1). Familial HDL deficiency (FHA) is a more frequent cause of low HDL levels. On the basis of independent linkage and meiotic recombinants, we localized the FHA locus to the same genomic region as the TD locus. Mutations in ABC1 were detected in both TD and FHA, indicating that TD and FHA are allelic. This indicates that the protein encoded by ABC1 is a key gatekeeper influencing intracellular cholesterol transport, hence we have named it cholesterol efflux regulatory protein (CERP).
The expression of certain genes involved in fundamental metabolism is regulated by metabolite-binding ''riboswitch'' elements embedded within their corresponding mRNAs. We have identified at least six additional elements within the Bacillus subtilis genome that exhibit characteristics of riboswitch function (glmS, gcvT, ydaO͞yuaA, ykkC͞yxkD, ykoK, and yybP͞ykoY). These motifs exhibit extensive sequence and secondary-structure conservation among many bacterial species and occur upstream of related genes. The element located upstream of the glmS gene in Grampositive organisms functions as a metabolite-dependent ribozyme that responds to glucosamine-6-phosphate. Other motifs form complex folded structures when transcribed as RNA molecules and carry intrinsic terminator structures. These findings indicate that riboswitches serve as a major genetic regulatory mechanism for the control of metabolic genes in many microbial species. R iboswitches are highly structured domains within mRNAs that precisely sense metabolites and control gene expression (1). These RNA elements are capable of binding to a variety of target compounds and subsequently modulating transcription and translation with performance characteristics that are similar to those of protein genetic factors. Typically, each riboswitch is composed of a conserved metabolite-binding domain (aptamer) located upstream of a variable sequence region (expression platform) that dictates the level of gene expression. Allosteric changes brought about by metabolite binding to the aptamer are harnessed by the expression platform to modulate the expression of the adjacent gene or operon. Riboswitches are versatile genetic control elements. In some instances, both transcription and translation control are used by the same aptamer class in the same prokaryotic organism (e.g., see ref.2). Evidence also shows that riboswitches can use mRNA-processing events to modulate gene expression (3, 4).The various metabolites that are detected by known riboswitches are of fundamental importance to living systems (5). On this basis, we have speculated that modern riboswitches might be the remaining representatives of an ancient metabolitemonitoring system that was present in the RNA World (5-9). The wide distribution of some riboswitch classes among microbes (e.g., see refs. 5 and 9-14) and the presence of metabolitebinding RNA domains in eukaryotes (4) support this hypothesis. Each of the seven classes of riboswitches reported (1, 5) was examined for metabolite-binding function because published genetic evidence showed that these elements were important for genetic control. Because the regulation of many metabolism genes has not been characterized in detail, it is possible that numerous other metabolite-binding RNA motifs exist in nature.The riboswitches known to be present in prokaryotes are typically located in noncoding or intergenic regions (IGRs). Therefore, the examination of unusually long IGRs for indications of conserved sequence and secondary-structure elements should yield new...
Huntington disease (HD) is an autosomal-dominant disorder that results from >or=36 CAG repeats in the HD gene (HTT). Approximately 10% of patients inherit a chromosome that underwent CAG expansion from an unaffected parent with <36 CAG repeats. This study is a comprehensive analysis of genetic diversity in HTT and reveals that HD patients of European origin (n = 65) have a significant enrichment (95%) of a specific set of 22 tagging single nucleotide polymorphisms (SNPs) that constitute a single haplogroup. The disease association of many SNPs is much stronger than any previously reported polymorphism and was confirmed in a replication cohort (n = 203). Importantly, the same haplogroup is also significantly enriched (83%) in individuals with 27-35 CAG repeats (intermediate alleles, n = 66), who are unaffected by the disease, but have increased CAG tract sizes relative to the general population (n = 116). These data support a stepwise model for CAG expansion into the affected range (>or=36 CAG) and identifies specific haplogroup variants in the general population associated with this instability. The specific variants at risk for CAG expansion are not present in the general population in China, Japan, and Nigeria where the prevalence of HD is much lower. The current data argue that cis-elements have a major predisposing influence on CAG instability in HTT. The strong association between specific SNP alleles and CAG expansion also provides an opportunity of personalized therapeutics in HD where the clinical development of only a small number of allele-specific targets may be sufficient to treat up to 88% of the HD patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.