Topoisomerase I (Top1) is an abundant and essential enzyme. Top1 is the selective target of camptothecins, which are effective anticancer agents. Top1-DNA cleavage complexes can also be trapped by various endogenous and exogenous DNA lesions including mismatches, abasic sites and carcinogenic adducts. Tyrosyl-DNA phosphodiesterase (Tdp1) is one of the repair enzymes for Top1-DNA covalent complexes. Tdp1 forms a multiprotein complex that includes poly(ADP) ribose polymerase (PARP). PARP-deficient cells are hypersensitive to camptothecins and functionally deficient for Tdp1. We will review recent developments in several pathways involved in the repair of Top1 cleavage complexes and the role of Chk1 and Chk2 checkpoint kinases in the cellular responses to Top1 inhibitors. The genes conferring camptothecin hypersensitivity are compiled for humans, budding yeast and fission yeast. A. Introduction: Mammalian Topoisomerase Families, Top1 Functions and Catalytic MechanismsSeven topoisomerase genes are encoded in the human nuclear genome [1]. The enzymes (abbreviated Topo or Top) have been numbered in the order of their discovery except for the most recent enzyme, mitochondrial topoisomerase I (Top1mt) [2,3]. Vertebrate cells contain two Top1 (Top1 for the nuclear genome and Top1mt for the mitochondrial genome), two Top2 (Top2α and β) and two Top3 (Top3α and β). The seventh topoisomerase is Spo11, whose expression is restricted to germ cells. Top3α forms heterodimers with BLM (the gene product deficient in Bloom syndrome) and is functionally related to the resolution of post-replicative hemicatenanes and recombination intermediates [4,5]. Top1 proteins belong to the family of the tyrosine recombinases (which includes λ-integrase, Flip and Cre recombinases), and Top2 is related to bacterial gyrase and Topo IV, which are the targets of quinolone antibiotics.Topoisomerases and tyrosine recombinases nick and religate DNA by forming a covalent enzyme-DNA intermediate between an enzyme catalytic tyrosine residue and the end of the broken DNA (Fig. 1). These covalent intermediates are generally referred to as "cleavage (or cleavable) complexes" (Fig. 2). Topoisomerases have also been classified in two groups depending whether they cleave and religate one strand (type I) or both strands (type II) of the DNA duplex. Type I enzymes include Top1 (nuclear), Top1mt, Top3α and β and type II enzymes include Top2α and β and Spo11.Top1 is essential in vertebrates and flies but not in yeast. Knocking out the TOP1 gene results in early embryonic lethality in mouse [6] and fly [7]. By contrast, yeast survives in the absence *To whom reprint requests should be addressed, Bldg. 37, Rm. 5068, NIH, Bethesda, MD 20892-4255 [8]. Top1 is expressed constitutively throughout the cell cycle [9] and is concentrated in the nucleolus [10,11]. Its main function is to relieve both positive and negative DNA supercoiling generated by transcription and replication, and possibly DNA repair and chromatin remodeling [1,[12][13][14]. The mechanistic sim...
Topoisomerase I (Top1) catalyzes two transesterification reactions: single-strand DNA cleavage and religation that are normally coupled for the relaxation of DNA supercoiling in transcribing and replicating chromatin. A variety of endogenous DNA modifications, potent anticancer drugs and carcinogens uncouple these two reactions, resulting in the accumulation of Top1 cleavage complexes. Top1 cleavage complexes damage DNA and kill cells by generating replication-mediated DNA double-strand breaks (DSBs) and by stalling transcription complexes. The repair of Top1-mediated DNA lesions involves integrated pathways that are conserved from yeasts to humans. Top1-mediated DNA damage and cell cycle checkpoint responses can be studied biochemically and genetically in yeast and human cells with known genetic defects. Defects in these repair/checkpoint pathways, which promote tumor development, explain, at least in part, the selectivity of camptothecins and other Top1 inhibitors for cancer cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.