Modern sugarcanes are polyploid interspecific hybrids, combining high sugar content from Saccharum officinarum with hardiness, disease resistance and ratooning of Saccharum spontaneum. Sequencing of a haploid S. spontaneum, AP85-441, facilitated the assembly of 32 pseudo-chromosomes comprising 8 homologous groups of 4 members each, bearing 35,525 genes with alleles defined. The reduction of basic chromosome number from 10 to 8 in S. spontaneum was caused by fissions of 2 ancestral chromosomes followed by translocations to 4 chromosomes. Surprisingly, 80% of nucleotide binding site-encoding genes associated with disease resistance are located in 4 rearranged chromosomes and 51% of those in rearranged regions. Resequencing of 64 S. spontaneum genomes identified balancing selection in rearranged regions, maintaining their diversity. Introgressed S. spontaneum chromosomes in modern sugarcanes are randomly distributed in AP85-441 genome, indicating random recombination among homologs in different S. spontaneum accessions. The allele-defined Saccharum genome offers new knowledge and resources to accelerate sugarcane improvement.
BackgroundSacred lotus is a basal eudicot with agricultural, medicinal, cultural and religious importance. It was domesticated in Asia about 7,000 years ago, and cultivated for its rhizomes and seeds as a food crop. It is particularly noted for its 1,300-year seed longevity and exceptional water repellency, known as the lotus effect. The latter property is due to the nanoscopic closely packed protuberances of its self-cleaning leaf surface, which have been adapted for the manufacture of a self-cleaning industrial paint, Lotusan.ResultsThe genome of the China Antique variety of the sacred lotus was sequenced with Illumina and 454 technologies, at respective depths of 101× and 5.2×. The final assembly has a contig N50 of 38.8 kbp and a scaffold N50 of 3.4 Mbp, and covers 86.5% of the estimated 929 Mbp total genome size. The genome notably lacks the paleo-triplication observed in other eudicots, but reveals a lineage-specific duplication. The genome has evidence of slow evolution, with a 30% slower nucleotide mutation rate than observed in grape. Comparisons of the available sequenced genomes suggest a minimum gene set for vascular plants of 4,223 genes. Strikingly, the sacred lotus has 16 COG2132 multi-copper oxidase family proteins with root-specific expression; these are involved in root meristem phosphate starvation, reflecting adaptation to limited nutrient availability in an aquatic environment.ConclusionsThe slow nucleotide substitution rate makes the sacred lotus a better resource than the current standard, grape, for reconstructing the pan-eudicot genome, and should therefore accelerate comparative analysis between eudicots and monocots.
Sex determination in papaya is controlled by a recently evolved XY chromosome pair, with two slightly different Y chromosomes controlling the development of males (Y) and hermaphrodites (Y h ).To study the events of early sex chromosome evolution, we sequenced the hermaphrodite-specific region of the Y h chromosome (HSY) and its X counterpart, yielding an 8.1-megabase (Mb) HSY pseudomolecule, and a 3.5-Mb sequence for the corresponding X region. The HSY is larger than the X region, mostly due to retrotransposon insertions. The papaya HSY differs from the X region by two large-scale inversions, the first of which likely caused the recombination suppression between the X and Y h chromosomes, followed by numerous additional chromosomal rearrangements. Altogether, including the X and/or HSY regions, 124 transcription units were annotated, including 50 functional pairs present in both the X and HSY. Ten HSY genes had functional homologs elsewhere in the papaya autosomal regions, suggesting movement of genes onto the HSY, whereas the X region had none. Sequence divergence between 70 transcripts shared by the X and HSY revealed two evolutionary strata in the X chromosome, corresponding to the two inversions on the HSY, the older of which evolved about 7.0 million years ago. Gene content differences between the HSY and X are greatest in the older stratum, whereas the gene content and order of the collinear regions are identical. Our findings support theoretical models of early sex chromosome evolution.Carica papaya | DNA sequencing | molecular evolution | sex chromosomes S ex chromosomes have evolved independently in diverse lineages of animals and plants, and new dioecious species are still evolving (1, 2). Evidence of homology between nascent sex chromosome pairs in flowering plants and fish (3-6) supports the notion that sex chromosomes evolved from autosomes that gained sex determination genes. The key event in sex chromosome evolution is the suppression of recombination between the sex-determining regions of ancestrally homologous chromosome pairs, which limits one chromosome of the pair to one sex, producing XY (male heterogametic) or ZW (female heterogametic) systems. Evolutionary models predict that a lack of recombination allows for Y-or W-specific characteristics to accumulate, through the reduced efficacy of selection on these chromosomes (7,8), leading to the Y and W chromosomes accumulating deleterious mutations and transposable elements, and ultimately undergoing genetic degeneration, through the loss of genes or gene functions, as observed in mammals, Drosophila, birds, fishes, and snakes (9, 10). In some animals and plants, the greater number of mitotic cell divisions in spermatogenesis than oogenesis also leads to Y chromosomes having a higher mutation rate than autosomes or X chromosomes (11)(12)(13)(14) and is predicted to further contribute to greater changes of the evolving Y (or W) chromosome than the X (or Z) chromosome.To test these predictions of repetitive sequence accumulation, chromosoma...
Sex in papaya is controlled by a pair of nascent sex chromosomes. Females are XX, and two slightly different Y chromosomes distinguish males (XY) and hermaphrodites (XY h ). The hermaphrodite-specific region of the Y h chromosome (HSY) and its X chromosome counterpart were sequenced and analyzed previously. We now report the sequence of the entire male-specific region of the Y (MSY). We used a BAC-by-BAC approach to sequence the MSY and resequence the Y regions of 24 wild males and the Y h regions of 12 cultivated hermaphrodites. The MSY and HSY regions have highly similar gene content and structure, and only 0.4% sequence divergence. The MSY sequences from wild males include three distinct haplotypes, associated with the populations' geographic locations, but gene flow is detected for other genomic regions. The Y h sequence is highly similar to one Y haplotype (MSY3) found only in wild dioecious populations from the north Pacific region of Costa Rica. The low MSY3-Y h divergence supports the hypothesis that hermaphrodite papaya is a product of human domestication. We estimate that Y h arose only ∼4000 yr ago, well after crop plant domestication in Mesoamerica >6200 yr ago but coinciding with the rise of the Maya civilization. The Y h chromosome has lower nucleotide diversity than the Y, or the genome regions that are not fully sex-linked, consistent with a domestication bottleneck. The identification of the ancestral MSY3 haplotype will expedite investigation of the mutation leading to the domestication of the hermaphrodite Y h chromosome. In turn, this mutation should identify the gene that was affected by the carpel-suppressing mutation that was involved in the evolution of males.
X chromosomes have long been thought to conserve the structure and gene content of the ancestral autosome from which the sex chromosomes evolved. We compared the recently evolved papaya sex chromosomes with a homologous autosome of a close relative, the monoecious Vasconcellea monoica, to infer changes since recombination stopped between the papaya sex chromosomes. We sequenced 12 V. monoica bacterial artificial chromosomes, 11 corresponding to the papaya X-specific region, and 1 to a papaya autosomal region. The combined V. monoica X-orthologous sequences are much shorter (1.10 Mb) than the corresponding papaya region (2.56 Mb). Given that the V. monoica genome is 41% larger than that of papaya, this finding suggests considerable expansion of the papaya X; expansion is supported by a higher repetitive sequence content of the X compared with the papaya autosomal sequence. The alignable regions include 27 transcriptencoding sequences, only 6 of which are functional X/V. monoica gene pairs. Sequence divergence from the V. monoica orthologs is almost identical for papaya X and Y alleles; the Carica-Vasconcellea split therefore occurred before the papaya sex chromosomes stopped recombining, making V. monoica a suitable outgroup for inferring changes in papaya sex chromosomes. The papaya X and the hermaphrodite-specific region of the Y h chromosome and V. monoica have all gained and lost genes, including a surprising amount of changes in the X.Carica papaya | gene gains and losses | sex chromosome evolution | suppression of recombination | centromere of X chromosome P apaya (Carica papaya L.) is a trioecious tropical fruit crop that has a nascent XY sex chromosome system, in which the sex determining region occupies a small fraction of the X/Y chromosome pair (1-3). Papaya has two slightly different Y chromosomes that diverged about 73,000 y ago, Y in males and Y h in hermaphrodites (4). All genotypes without X chromosomes (YY, YY h , and Y h Y h ) are lethal in early development, resulting in 25% aborted seeds in selfed hermaphrodites and in crosses between hermaphrodites and males (5), indicating that both Y types have lost at least one gene essential for development.Papaya belongs to the family Caricaceae, with six genera and 35 species, 32 of which are dioecious, two are trioecious (with male, female, and hermaphrodite individuals) and one, Vasconcellea monoica, is monoecious (with male and female flowers on a single plant). The predominance of dioecious species suggests that dioecy is ancestral in this family and that the trioecious and monoecious species evolved recently. V. monoica has no sex chromosomes, because there is no sexual dimorphism among individuals, and there is a single sequence corresponding to each of the several papaya X/Y h gene pairs tested, whereas distinct X and Y alleles were detected in several dioecious Vasconcellea species (6), which indicates that the sex chromosomes in these species are homologous with those in papaya.V. monoica therefore provides an opportunity to compare the recentl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.