The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals, and plastics, significantly abrogated foreign body reactions and fibrosis when compared to smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5 mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than 5-fold longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved by simply tuning their spherical dimensions.
The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in diabetic patients1. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically2, but are limited by the adverse effects of lifetime immunosuppression and the limited supply of donor tissue3. The latter concern may be addressed by recently described glucose responsive mature β-cells derived from human embryonic stem cells; called SC-β, these cells may represent an unlimited human cell source for pancreas replacement therapy4. Strategies to address the immunosuppression concern include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier5,6. However, clinical implementation has been challenging due to host immune responses to implant materials7. Here, we report the first long term glycemic correction of a diabetic, immune-competent animal model with human SC-β cells. SC-β cells were encapsulated with alginate-derivatives capable of mitigating foreign body responses in vivo, and implanted into the intraperitoneal (IP) space of streptozotocin-treated (STZ) C57BL/6J mice. These implants induced glycemic correction until removal at 174 days without any immunosuppression. Human C-peptide concentrations and in vivo glucose responsiveness demonstrate therapeutically relevant glycemic control. Implants retrieved after 174 days contained viable insulin-producing cells.
Highlights d b cell senescence signature reveals loss of identity and upregulation of SASP factors d Insulin resistance accelerates the appearance of senescent b cells d Clearance of senescent cells improves glucose levels, b cell function, and identity d In humans, b cell senescence increases with type 2 diabetes, age, and BMI
The transplantation of pancreatic islet cells could restore glycaemic control in patients with type-I diabetes. Microspheres for islet encapsulation have enabled long-term glycaemic control in diabetic rodent models; yet human patients transplanted with equivalent microsphere formulations have experienced only transient islet-graft function, owing to a vigorous foreign-body reaction (FBR), to pericapsular fibrotic overgrowth (PFO) and, in upright bipedal species, to the sedimentation of the microspheres within the peritoneal cavity. Here, we report the results of the testing, in non-human primate (NHP) models, of seven alginate formulations that were efficacious in rodents, including three that led to transient islet-graft function in clinical trials. Although one month post-implantation all formulations elicited significant FBR and PFO, three chemically modified, immune-modulating alginate formulations elicited reduced FBR. In conjunction with a minimally invasive transplantation technique into the bursa omentalis of NHPs, the most promising chemically modified alginate derivative (Z1-Y15) protected viable and glucose-responsive allogeneic islets for 4 months without the need for immunosuppression. Chemically modified alginate formulations may enable the long-term transplantation of islets for the correction of insulin deficiency
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.