Thirteen families have been described with an autosomal dominantly inherited dementia named frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), historically termed Pick's disease. Most FTDP-17 cases show neuronal and/or glial inclusions that stain positively with antibodies raised against the microtubule-associated protein Tau, although the Tau pathology varies considerably in both its quantity (or severity) and characteristics. Previous studies have mapped the FTDP-17 locus to a 2-centimorgan region on chromosome 17q21.11; the tau gene also lies within this region. We have now sequenced tau in FTDP-17 families and identified three missense mutations (G272V, P301L and R406W) and three mutations in the 5' splice site of exon 10. The splice-site mutations all destabilize a potential stem-loop structure which is probably involved in regulating the alternative splicing of exon10. This causes more frequent usage of the 5' splice site and an increased proportion of tau transcripts that include exon 10. The increase in exon 10+ messenger RNA will increase the proportion of Tau containing four microtubule-binding repeats, which is consistent with the neuropathology described in several families with FTDP-17.
Alcoholism is a complex disease with both genetic and environmental risk factors. To identify genes that affect the risk for alcoholism, we systematically ascertained and carefully assessed individuals in families with multiple alcoholics. Linkage and association analyses suggested that a region of chromosome 4p contained genes affecting a quantitative endophenotype, brain oscillations in the beta frequency range (13-28 Hz), and the risk for alcoholism. To identify the individual genes that affect these phenotypes, we performed linkage disequilibrium analyses of 69 single-nucleotide polymorphism (SNPs) within a cluster of four GABA(A) receptor genes, GABRG1, GABRA2, GABRA4, and GABRB1, at the center of the linked region. GABA(A) receptors mediate important effects of alcohol and also modulate beta frequencies. Thirty-one SNPs in GABRA2, but only 1 of the 20 SNPs in the flanking genes, showed significant association with alcoholism. Twenty-five of the GABRA2 SNPs, but only one of the SNPs in the flanking genes, were associated with the brain oscillations in the beta frequency. The region of strongest association with alcohol dependence extended from intron 3 past the 3' end of GABRA2; all 43 of the consecutive three-SNP haplotypes in this region of GABRA2 were highly significant. A three-SNP haplotype was associated with alcoholism, with P=.000000022. No coding differences were found between the high-risk and low-risk haplotypes, suggesting that the effect is mediated through gene regulation. The very strong association of GABRA2 with both alcohol dependence and the beta frequency of the electroencephalogram, combined with biological evidence for a role of this gene in both phenotypes, suggest that GABRA2 might influence susceptibility to alcohol dependence by modulating the level of neural excitation.
Charcot-Marie-Tooth type 2B (CMT2B) is clinically characterized by marked distal muscle weakness and wasting and a high frequency of foot ulcers, infections, and amputations of the toes because of recurrent infections. CMT2B maps to chromosome 3q13-q22. We refined the CMT2B locus to a 2.5-cM region and report two missense mutations (Leu129Phe and Val162Met) in the small GTP-ase late endosomal protein RAB7 which causes the CMT2B phenotype in three extended families and in three patients with a positive family history. The alignment of RAB7 orthologs shows that both missense mutations target highly conserved amino acid residues. RAB7 is ubiquitously expressed, and we found expression in sensory and motor neurons.
Several correlated phenotypes, alcohol dependence, major depressive syndrome, and an endophenotype of electrophysiological measurements, event-related oscillations (EROs), have demonstrated linkage on the long arm of chromosome 7. Recently, we reported both linkage and association between polymorphisms in the gene encoding the muscarinic acetylcholine receptor M2 (CHRM2) and EROs. In this study, we evaluated whether genetic variation in the CHRM2 gene is also a risk factor for the correlated clinical characteristics of alcoholism and depression. The CHRM2 gene contains a single coding exon and a large 5' untranslated region encoded by multiple exons that can be alternatively spliced. Families were recruited through an alcohol dependent proband, and multiplex pedigrees were selected for genetic analyses. We examined 11 single nucleotide polymorphisms (SNPs) spanning the CHRM2 gene in these families. Using the UNPHASED pedigree disequilibrium test (PDTPHASE), three SNPs (one in intron 4 and two in intron 5) showed highly significant association with alcoholism (P=0.004-0.007). Two SNPs (both in intron 4) were significantly associated with major depressive syndrome (P=0.004 and 0.017). Haplotype analyses revealed that the most common haplotype (>40% frequency), T-T-T (rs1824024-rs2061174-rs324650), was under-transmitted to affected individuals with alcohol dependence and major depressive syndrome. Different complementary haplotypes were over-transmitted in alcohol dependent and depressed individuals. These findings provide strong evidence that variants within or close to the CHRM2 locus influence risk for two common psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.