Although disease hosts are classically assumed to interact randomly [1], infection is likely to spread across structured and dynamic contact networks [2]. We used social network analyses to investigate contact patterns of group-living European badgers, Meles meles, which are an important wildlife reservoir of bovine tuberculosis (TB). We found that TB test-positive badgers were socially isolated from their own groups but were more important for flow, potentially of infection, between social groups. The distinctive social position of infected badgers may help explain how social stability mitigates, and social perturbation increases, the spread of infection in badgers.
BMS-747158-02 exhibited high and sustained cardiac uptake that was proportional to blood flow, and it represents a new class of PET myocardial perfusion imaging agent.
Summary1. Demographic links among fragmented populations are commonly studied as source-sink dynamics, whereby source populations exhibit net recruitment and net emigration, while sinks suffer net mortality but enjoy net immigration. It is commonly assumed that large, persistent aggregations of individuals must be sources, but this ignores the possibility that they are sinks instead, buoyed demographically by immigration. 2. We tested this assumption using Bayesian integrated population modelling of Greenland white-fronted geese (Anser albifrons flavirostris) at their largest wintering site (Wexford, Ireland), combining capture-mark-recapture, census and recruitment data collected from 1982 to 2010. Management for this subspecies occurs largely on wintering areas; thus, study of sourcesink dynamics of discrete regular wintering units provides unprecedented insights into population regulation and enables identification of likely processes influencing population dynamics at Wexford and among 70 other Greenland white-fronted goose wintering subpopulations. 3. Using results from integrated population modelling, we parameterized an age-structured population projection matrix to determine the contribution of movement rates (emigration and immigration), recruitment and mortality to the dynamics of the Wexford subpopulation. 4. Survival estimates for juvenile and adult birds at Wexford and adult birds elsewhere fluctuated over the 29-year study period, but were not identifiably different. However, per capita recruitment rates at Wexford in later years (post-1995) were identifiably lower than in earlier years (pre-1995). The observed persistence of the Wexford subpopulation was only possible with high rates of immigration, which exceeded emigration in each year. Thus, despite its apparent stability, Wexford has functioned as a sink over the entire study period.5. These results demonstrate that even large subpopulations can potentially be sinks, and that movement dynamics (e.g. immigration) among winters can dramatically obscure key processes driving subpopulation size. Further, novel population models which integrate capture-markrecapture, census and recruitment data are essential to correctly ascribing source-sink status and accurately informing development of site-safeguard networks.
Domestic cats (Felis catus) are a conservation concern because they kill billions of native prey each year, but without spatial context the ecological importance of pets as predators remains uncertain. We worked with citizen scientists to track 925 pet cats from six countries, finding remarkably small home ranges (3.6 AE 5.6 ha). Only three cats ranged > 1 km 2 and we found no relationship between home range size and the presence of larger native predators (i.e. coyotes, Canis latrans). Most (75%) cats used primarily (90%) disturbed habitats. Owners reported that their pets killed an average of 3.5 prey items/month, leading to an estimated ecological impact per cat of 14.2-38.9 prey ha À1 yr À1. This is similar or higher than the peranimal ecological impact of wild carnivores but the effect is amplified by the high density of cats in neighborhoods. As a result, pet cats around the world have an ecological impact greater than native predators but concentrated within~100 m of their homes.
The current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.