Data Release 5 (DR5) of the Radial Velocity Experiment (RAVE) is the fifth data release from a magnitude-limited (9 < I < 12) survey of stars randomly selected in the southern hemisphere. The RAVE medium-resolution spectra (R ∼ 7500) covering the Ca-triplet region (8410-8795Å) span the complete time frame from the start of RAVE observations in 2003 to their completion in 2013. Radial velocities from 520 781 spectra of 457 588 unique stars are presented, of which 255 922 stellar observations have parallaxes and proper motions from the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. For our main DR5 catalog, stellar parameters (effective temperature, surface gravity, and overall metallicity) are computed using the RAVE DR4 stellar pipeline, but calibrated using recent K2 Campaign 1 seismic gravities and Gaia benchmark stars, as well as results obtained from highresolution studies. Also included are temperatures from the Infrared Flux Method, and we provide a catalogue of red giant stars in the dereddened color (J − Ks) 0 interval (0.50,0.85) for which the gravities were calibrated based only on seismology. Further data products for sub-samples of the RAVE stars include individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni, and distances found using isochrones. Each RAVE spectrum is complemented by an error spectrum, which has been used to determine uncertainties on the parameters. The data can be accessed via the RAVE Web site or the Vizier database.
We measured [Fe/H] and [α/Fe] using spectral synthesis of low-resolution stellar spectroscopy for 70 individual red giant branch stars across four fields spanning the outer disk, Giant Stellar Stream (GSS), and inner halo of M31. Fields at M31-centric projected distances of 23 kpc in the halo, 12 kpc in the halo, 22 kpc in the GSS, and 26 kpc in the outer disk are α-enhanced, with [α/Fe] = 0.43, 0.50, 0.41, and 0.58, respectively. The 23 kpc and 12 kpc halo fields are relatively metal-poor, with [Fe/H] = −1.54 and −1.30, whereas the 22 kpc GSS and 26 kpc outer disk fields are relatively metal-rich with [Fe/H] = −0.84 and −0.92, respectively. For fields with substructure, we separated the stellar populations into kinematically hot stellar halo components and kinematically cold components. We did not find any evidence of an [α/Fe] gradient along the high surface brightness core of the GSS between ∼17−22 kpc. However, we found tentative suggestions of a negative [α/Fe] gradient in the stellar halo, which may indicate that different progenitor(s) or formation mechanisms contributed to the build up of the inner versus outer halo. Additionally, the [α/Fe] distribution of the metal-rich ([Fe/H] > −1.5), smooth inner stellar halo (r proj 26 kpc) is inconsistent with having formed from the disruption of progenitor(s) similar to present-day M31 satellite galaxies. The 26 kpc outer disk is most likely associated with the extended disk of M31, where its high α-enhancement provides support for an episode of rapid star formation in M31's disk induced by a major merger.
We present the first measurements of [Fe/H] and [α/Fe] abundances, obtained using spectral synthesis modeling, for red giant branch stars in M31's giant stellar stream. The spectroscopic observations, obtained at a projected distance of 17 kpc from M31's center, yielded 61 stars with [Fe/H] measurements, including 21 stars with [α/Fe] measurements, from 112 targets identified as M31 stars. The [Fe/H] measurements confirm the expectation from photometric metallicity estimates that stars in this region of M31's halo are relatively metal-rich compared to stars in the MW's inner halo: more than half the stars in the field, including those not associated with kinematically identified substructure, have [Fe/H] abundances > −1.0. The stars in this field are α-enhanced at lower metallicities, while [α/Fe] decreases with increasing [Fe/H] above metallicities of [Fe/H] −0.9. Three kinematical components have been previously identified in this field: the giant stellar stream, a second kinematically cold feature of unknown origin, and M31's kinematically hot halo. We compare probabilistic [Fe/H] and [α/Fe] distribution functions for each of the components. The giant stellar stream and the second kinematically cold feature have very similar abundance distributions, while the halo component is more metal-poor. Although the current sample sizes are small, a comparison of the abundances of stars in the GSS field with abundances of M31 halo and dSph stars from the literature indicate that the progenitor of the stream was likely more massive, and experienced a higher efficiency of star formation, than M31's existing dSphs or the dEs NGC 147 and NGC 185.
We present deep spectroscopy from Keck/DEIMOS of Andromeda I, III, V, VII, and X, all of which are dwarf spheroidal satellites of M31. The sample includes 256 spectroscopic members across all five dSphs. We confirm previous measurements of the velocity dispersions and dynamical masses, and we provide upper limits on bulk rotation. Our measurements confirm that M31 satellites obey the same relation between stellar mass and stellar metallicity as Milky Way (MW) satellites and other dwarf galaxies in the Local Group. The metallicity distributions show similar trends with stellar mass as MW satellites, including evidence in massive satellites for external influence, like pre-enrichment or gas accretion. We present the first measurements of individual element ratios, like [Si/Fe], in the M31 system, as well as measurements of the average [α/Fe] ratio. The trends of [α/Fe] with [Fe/H] also follow the same galaxy mass-dependent patterns as MW satellites. Less massive galaxies have more steeply declining slopes of [α/Fe] that begin at lower [Fe/H]. Finally, we compare the chemical evolution of M31 satellites to M31's Giant Stellar Stream and smooth halo. The properties of the M31 system support the theoretical prediction that the inner halo is composed primarily of massive galaxies that were accreted early. As a result, the inner halo exhibits higher [Fe/H] and [α/Fe] than surviving satellite galaxies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.