We investigate the correlations between the black hole mass M BH , the velocity dispersion σ, the bulge mass M Bu , the bulge average spherical density ρ h and its spherical half mass radius r h , constructing a database of 97 galaxies (31 core ellipticals, 17 power-law ellipticals, 30 classical bulges, 19 pseudo bulges) by joining 72 galaxies from the literature to 25 galaxies observed during our recent SINFONI black hole survey. For the first time we discuss the full error covariance matrix. We analyse the well known M BH -σ and M BH -M Bu relations and establish the existence of statistically significant correlations between M Bu and r h and anti-correlations between M Bu and ρ h . We establish five significant bivariate correlationsthat predict M BH of 77 core and power-law ellipticals and classical bulges with measured and intrinsic scatter as small as ≈ 0.36 dex and ≈ 0.33 dex respectively, or 0.26 dex when the subsample of 45 galaxies defined by Kormendy & Ho (2013) is considered. In contrast, pseudo bulges have systematically lower M BH , but approach the predictions of all the above relations at spherical densities ρ h ≥ 10 10 M /kpc 3 or scale lengths r h ≤ 1 kpc. These findings fit in a scenario of co-evolution of BH and classical-bulge masses, where core ellipticals are the product of dry mergers of power-law bulges and power-law Es and bulges the result of (early) gas-rich mergers and of disk galaxies. In contrast, the (secular) growth of BHs is decoupled from the growth of their pseudo bulge hosts, except when (gas) densities are high enough to trigger the feedback mechanism responsible for the existence of the correlations between M BH and galaxy structural parameters.
Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M * 10 11.5 M and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.
Shallow cores in bright, massive galaxies are commonly thought to be the result of scouring of stars by mergers of binary supermassive black holes. Past investigations have suggested correlations between the central black hole mass and the stellar light or mass deficit in the core, using proxy measurements of M BH or stellar mass-to-light ratios (Υ). Drawing on a wealth of dynamical models which provide both M BH and Υ, we identify cores in 23 galaxies, of which 20 have direct, reliable measurements of M BH and dynamical stellar mass-to-light ratios (Υ ⋆,dyn ). These cores are identified and measured using Core-Sérsic model fits to surface brightness profiles which extend out to large radii (typically more than the effective radius of the galaxy); for approximately one fourth of the galaxies, the best fit includes an outer (Sérsic) envelope component. We find that the core radius is most strongly correlated with the black hole mass and that it correlates better with total galaxy luminosity than it does with velocity dispersion. The strong core-size-M BH correlation enables estimation of black hole masses (in core galaxies) with an accuracy comparable to the M BH -σ relation (rms scatter of 0.30 dex in log M BH ), without the need for spectroscopy. The light and mass deficits correlate more strongly with galaxy velocity dispersion than they do with black hole mass. Stellar mass deficits span a range of 0.2-39 M BH , with almost all (87%) being < 10 M BH ; the median value is 2.2 M BH .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.