human immunodeficiency virus type 1 (HIV-1) Nef interacts with the clathrin-associated AP-1 and AP-3 adaptor complexes, stabilizing their association with endosomal membranes. These findings led us to hypothesize a general impact of this viral protein on the endosomal system. Here, we have shown that Nef specifically disturbs the morphology of the early/recycling compartment, inducing a redistribution of early endosomal markers and a shortening of the tubular recycling endosomal structures. Furthermore, Nef modulates the trafficking of the transferrin receptor (TfR), the prototypical recycling surface protein, indicating that it also disturbs the function of this compartment. Nef reduces the rate of recycling of TfR to the plasma membrane, causing TfR to accumulate in early endosomes and reducing its expression at the cell surface. These effects depend on the leucine-based motif of Nef, which is required for the membrane stabilization of AP-1 and AP-3 complexes. Since we show that this motif is also required for the full infectivity of HIV-1 virions, these results indicate that the positive influence of Nef on viral infectivity may be related to its general effects on early/recycling endosomal compartments.Trafficking of membrane proteins is governed by a regulated machinery that involves the vesicular transport of proteins throughout different intracellular compartments. One major regulatory mechanism is related to the function of the adaptor protein (AP) 1 complexes that assemble on donor membranes of the endocytic pathway to form transport vesicles (for review, see Ref. 1). The sorting of transmembrane proteins into these vesicles requires the recognition by the AP complexes of specific tyrosine-or leucine-based motifs contained within the cytoplasmic domains of cargo proteins (2). Four different types of heterotetrameric AP complexes (AP-1-AP-4) have been identified (3). AP-2 is specifically involved in the formation of clathrincoated vesicles at the plasma membrane, whereas AP-1 and AP-3 mediate the formation of clathrin-coated vesicles at the levels of the trans-Golgi network (TGN) and endosomes. The function of AP-4 is less well documented, but it regulates formation of non-clathrin-coated vesicles at the TGN. The association of the AP-1, AP-3, and AP-4 complexes with TGN and endosomal membranes is regulated by ADP-ribosylation factor 1 (ARF1). The Nef protein of HIV-1 is a 27-kDa protein that associates with the cell membranes through N-terminal myristoylation and is abundantly produced shortly after virus infection (for review, see Refs. 4 and 5). Nef is an essential factor in vivo for efficient viral replication and pathogenesis. In vitro, Nef also facilitates virus replication and enhances the infectivity of virions. Although the positive influence of Nef on viral replication and infectivity may be multifactorial, genetic evidence suggests a relationship between these virological effects and the ability of Nef to modulate the cell surface expression of multiple membrane-associated proteins. In additio...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.