To date, the significant anti-cancer capacity of cold atmospheric plasma (CAP) on dozens of cancer cell lines has been demonstrated in vitro and in mice models. Conventionally, CAP was directly applied to irradiate cancer cells or tumor tissue. Over past three years, the CAP irradiated media was also found to kill cancer cells as effectively as the direct CAP treatment. As a novel strategy, using the CAP stimulated (CAPs) media has become a promising anti-cancer tool. In this study, we demonstrated several principles to optimize the anti-cancer capacity of the CAPs media on glioblastoma cells and breast cancer cells. Specifically, using larger wells on a multi-well plate, smaller gaps between the plasma source and the media, and smaller media volume enabled us to obtain a stronger anti-cancer CAPs media composition without increasing the treatment time. Furthermore, cysteine was the main target of effective reactive species in the CAPs media. Glioblastoma cells were more resistant to the CAPs media than breast cancer cells. Glioblastoma cells consumed the effective reactive species faster than breast cancer cells did. In contrast to nitric oxide, hydrogen peroxide was more likely to be the effective reactive species.
Previous research in cold atmospheric plasma (CAP) and cancer cell interaction has repeatedly proven that the cold plasma induced cell death. It is postulated that the reactive oxygen species (ROS) and reactive nitrogen species (RNS) play a major role in the CAP cancer therapy. In this paper, we seek to determine a mechanism of CAP therapy on glioblastoma cells (U87) through an understanding of the composition of the plasma, including treatment time, voltage, flow-rate and plasma-gas composition. In order to determine the threshold of plasma treatment on U87, normal human astrocytes (E6/E7) were used as the comparison cell line. Our data showed that the 30 sec plasma treatment caused 3-fold cell death in the U87 cells compared to the E6/E7 cells. All the other compositions of cold plasma were performed based on this result: plasma treatment time was maintained at 30 s per well while other plasma characteristics such as voltage, flow rate of source gas, and composition of source gas were changed one at a time to vary the intensity of the reactive species composition in the plasma jet, which may finally have various effect on cells reflected by cell viability. We defined a term “plasma dosage” to summarize the relationship of all the characteristics and cell viability.
Cold atmospheric plasma (CAP) has just recently been showing promising anti-cancer activities supported by ability to induce cell death via apoptosis and cell cycle arrest leading to tumor cell destruction in vitro, and in vivo. Several studies showed the ability of CAP-activated media to modulate the tumor cell environment a link between the generation of reactive oxygen species/reactive nitrogen species and cancer cell death following CAP treatment. Targeting cancer cells through ROS-mediated mechanisms has become an attractive strategy for effective and selective cancer treatment by exploiting the aberrant redox characteristics of cancer cells. These effects support the potential direct (CAP) and indirect (CAP-activated media) applications for adjuvant anti-cancer therapeutics, in a combination with the chemo-, radio-, and nano-therapies.
Cold atmospheric plasma (CAP) treatment is a rapidly expanding and emerging technology for cancer treatment. Direct CAP jet irradiation is limited to the skin and it can also be invoked as a supplement therapy during surgery as it only causes cell death in the upper three to five cell layers. However, the current cannulas from which the plasma emanates are too large for intracranial applications. To enhance efficiency and expand the applicability of the CAP method for brain tumors and reduce the gas flow rate and size of the plasma jet, a novel micro-sized CAP device (µCAP) was developed and employed to target glioblastoma tumors in the murine brain. Various plasma diagnostic techniques were applied to evaluate the physics of helium µCAP such as electron density, discharge voltage, and optical emission spectroscopy (OES). The direct and indirect effects of µCAP on glioblastoma (U87MG-RedFluc) cancer cells were investigated in vitro. The results indicate that µCAP generates short- and long-lived species and radicals (i.e., hydroxyl radical (•OH), hydrogen peroxide (H2O2), and nitrite (NO2−), etc.) with increasing tumor cell death in a dose-dependent manner. Translation of these findings to an in vivo setting demonstrates that intracranial µCAP is effective at preventing glioblastoma tumor growth in the mouse brain. The µCAP device can be safely used in mice, resulting in suppression of tumor growth. These initial observations establish the µCAP device as a potentially useful ablative therapy tool in the treatment of glioblastoma.
Cold atmospheric plasma (CAP) constitutes a “cocktail” of various reactive species. Accumulating evidence shows the effectiveness of CAP in killing cancer cells and decreasing the tumor size, which provides a solid basis for its potential use in cancer treatment. Currently, CAP is mainly used to directly treat cancer cells and trigger the death of cancer cells via apoptosis or necrosis. By altering the concentration of fetal bovine serum in Dulbecco's modified Eagle's medium and the temperature to store CAP stimulated media, we demonstrated controllable strategies to harness the stimulated media to kill glioblastoma cells in vitro. This study demonstrated the significant role of media in killing cancer cells via the CAP treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.