SUMMARY Genome-wide association studies (GWAS) have identified many risk loci for complex diseases, but effect sizes are typically small and information on the underlying biological processes is often lacking. Associations with metabolic traits as functional intermediates can overcome these problems and potentially inform individualized therapy. Here we report a comprehensive analysis of genotype-dependent metabolic phenotypes using a GWAS with non-targeted metabolomics. We identified 37 genetic loci associated with blood metabolite concentrations, of which 25 exhibit effect sizes that are unusually high for GWAS and account for 10-60% of metabolite levels per allele copy. Our associations provide new functional insights for many disease-related associations that have been reported in previous studies, including cardiovascular and kidney disorders, type 2 diabetes, cancer, gout, venous thromboembolism, and Crohn’s disease. Taken together our study advances our knowledge of the genetic basis of metabolic individuality in humans and generates many new hypotheses for biomedical and pharmaceutical research.
Metabolomic discovery of biomarkers of type 2 diabetes (T2D) risk may reveal etiological pathways and help to identify individuals at risk for disease. We prospectively investigated the association between serum metabolites measured by targeted metabolomics and risk of T2D in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam (27,548 adults) among all incident cases of T2D (n = 800, mean follow-up 7 years) and a randomly drawn subcohort (n = 2,282). Flow injection analysis tandem mass spectrometry was used to quantify 163 metabolites, including acylcarnitines, amino acids, hexose, and phospholipids, in baseline serum samples. Serum hexose; phenylalanine; and diacyl-phosphatidylcholines C32:1, C36:1, C38:3, and C40:5 were independently associated with increased risk of T2D and serum glycine; sphingomyelin C16:1; acyl-alkyl-phosphatidylcholines C34:3, C40:6, C42:5, C44:4, and C44:5; and lysophosphatidylcholine C18:2 with decreased risk. Variance of the metabolites was largely explained by two metabolite factors with opposing risk associations (factor 1 relative risk in extreme quintiles 0.31 [95% CI 0.21–0.44], factor 2 3.82 [2.64–5.52]). The metabolites significantly improved T2D prediction compared with established risk factors. They were further linked to insulin sensitivity and secretion in the Tübingen Family study and were partly replicated in the independent KORA (Cooperative Health Research in the Region of Augsburg) cohort. The data indicate that metabolic alterations, including sugar metabolites, amino acids, and choline-containing phospholipids, are associated early on with a higher risk of T2D.
Environmental factors such as tobacco smoking may have long-lasting effects on DNA methylation patterns, which might lead to changes in gene expression and in a broader context to the development or progression of various diseases. We conducted an epigenome-wide association study (EWAs) comparing current, former and never smokers from 1793 participants of the population-based KORA F4 panel, with replication in 479 participants from the KORA F3 panel, carried out by the 450K BeadChip with genomic DNA obtained from whole blood. We observed wide-spread differences in the degree of site-specific methylation (with p-values ranging from 9.31E-08 to 2.54E-182) as a function of tobacco smoking in each of the 22 autosomes, with the percent of variance explained by smoking ranging from 1.31 to 41.02. Depending on cessation time and pack-years, methylation levels in former smokers were found to be close to the ones seen in never smokers. In addition, methylation-specific protein binding patterns were observed for cg05575921 within AHRR, which had the highest level of detectable changes in DNA methylation associated with tobacco smoking (–24.40% methylation; p = 2.54E-182), suggesting a regulatory role for gene expression. The results of our study confirm the broad effect of tobacco smoking on the human organism, but also show that quitting tobacco smoking presumably allows regaining the DNA methylation state of never smokers.
Serum metabolite concentrations provide a direct readout of biological processes in the human body, and are associated with disorders such as cardiovascular and metabolic diseases. Here we present a genome-wide association study with 163 metabolic traits using 1809 participants from the KORA population, followed up in the TwinsUK cohort with 422 participants. In eight out of nine replicated loci (FADS1, ELOVL2, ACADS, ACADM, ACADL, SPTLC3, ETFDH, SLC16A9) the genetic variant is located in or near enzyme or solute carrier coding genes, where the associating metabolic traits match the proteins’ function. Many of these loci are located in rate limiting steps of important enzymatic reactions. Use of metabolite concentration ratios as proxies for enzymatic reaction rates reduces the variance and yields robust statistical associations with p-values between 3×10−24 and 6.5×10−179. These loci explained 5.6% to 36.3% of the observed variance. For several loci, associations with clinically relevant parameters have previously been reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.