MEK1 is a member of the MAPK signal transduction pathway that responds to growth factors and cytokines. We have determined that the kinase domain spans residues 35-382 by proteolytic cleavage. The complete kinase domain has been crystallized and its X-ray crystal structure as a complex with magnesium and ATP-gammaS determined at 2.1 A. Unlike crystals of a truncated kinase domain previously published, the crystals of the intact domain can be grown either as a binary complex with a nucleotide or as a ternary complex with a nucleotide and one of a multitude of allosteric inhibitors. Further, the crystals allow for the determination of costructures with ATP competitive inhibitors. We describe the structures of nonphosphorylated MEK1 (npMEK1) binary complexes with ADP and K252a, an ATP-competitive inhibitor (see Table 1), at 1.9 and 2.7 A resolution, respectively. Ternary complexes have also been solved between npMEK1, a nucleotide, and an allosteric non-ATP competitive inhibitor: ATP-gammaS with compound 1 and ADP with either U0126 or the MEK1 clinical candidate PD325089 at 1.8, 2.0, and 2.5 A, respectively. Compound 1 is structurally similar to PD325901. These structures illustrate fundamental differences among various mechanisms of inhibition at the molecular level. Residues 44-51 have previously been shown to play a negative regulatory role in MEK1 activity. The crystal structure of the integral kinase domain provides a structural rationale for the role of these residues. They form helix A and repress enzymatic activity by stabilizing an inactive conformation in which helix C is displaced from its active state position. Finally, the structure provides for the first time a molecular rationale that explains how mutations in MEK may lead to the cardio-facio-cutaneous syndrome.
Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or polyethylene glycol (PEG)-interferon-alpha alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of 70 (SCH 503034), a novel, potent, selective, orally bioavailable NS3 protease inhibitor that has been advanced to clinical trials in human beings for the treatment of hepatitis C viral infections is described. X-ray structure of inhibitor 70 complexed with the NS3 protease and biological data are also discussed.
A number of novel amidine containing heterocycles were designed to reproduce the unique interaction pattern, revealed by X-ray crystallography, between the BACE-1 catalytic diad and a weak NMR screening hit (3), with special attention paid to maintaining the appropriate basicity and limiting the number of H-bonding donors of these scaffolds. The iminohydantoin cores (10 and 23) were examined first and found to interact with the catalytic diad in one of two binding modes (A and B), each with the iminohydantoin core flipped 180 degrees in relation to the other. The amidine structural motif within each core forms a bidentate interaction with a different aspartic acid of the catalytic diad. Both modes reproduced a highly conserved interaction pattern between the inhibitors and the catalytic aspartates, as revealed by 3. Potent iminohydantoin BACE-1 inhibitors have been obtained, validating the molecular design as aspartyl protease catalytic site inhibitors. Brain penetrant small molecule BACE inhibitors with high ligand efficiencies have been discovered, enabling multiple strategies for further development of these inhibitors into highly potent, selective and in vivo efficacious BACE inhibitors.
We have previously shown that appropriate modification of the benzocycloheptapyridine tricyclic ring system can provide potent farnesyl protein transferase (FPT) inhibitors with good cellular activity. Our laboratories have also established that incorporation of either pyridinylacetyl N-oxide or 4-N-carboxamidopiperidinylacetyl moieties results in pharmacokinetically stable inhibitors that are orally efficacious in nude mice. We now demonstrate that further elaboration of the tricyclic ring system by introducing a bromine atom at the 7- or the 10-position of the 3-bromo-8-chlorotricyclic ring system provides compounds that have superior potency and selectivity in FPT inhibition. These compounds have good serum levels and half-lives when given orally to rodents and primates. In vitro and in vivo evaluation of a panel of these inhibitors has led to identification of 15 (SCH 66336) as a highly potent (IC50 = 1.9 nM) antitumor agent that is currently undergoing human clinical trials.
Boceprevir (SCH 503034), 1, a novel HCV NS3 serine protease inhibitor discovered in our laboratories, is currently undergoing phase III clinical trials. Detailed investigations toward a second generation protease inhibitor culminated in the discovery of narlaprevir (SCH 900518), 37, with improved potency (∼10-fold over 1), pharmacokinetic profile and physicochemical characteristics, currently in phase II human trials. Exploration of synthetic sequence for preparation of 37 resulted in a route that required no silica gel purification for the entire synthesis.KEYWORDS Hepatitis C virus NS3 serine protease inhibitor, R-ketoamide, narlaprevir, SCH 900518 H epatitis C virus (HCV) infection is a global health crisis leading to liver cirrhosis, hepatocellular carcinoma and liver failure in humans. 1 An estimated 3% of the human population worldwide is chronically infected with HCV. 2 Currently the only available treatment regimens are subcutaneous R-interferon or long-acting pegylated-interferon, alone or in combination with oral antiviral agent ribavirin. 3 The approved therapy is still far from ideal for the hard to treat genotype-1 patients 4 and is frequently accompanied by adverse side effects. There is an unmet medical need to discover new, more effective and tolerable regimens for the treatment of HCV infection. Advances in the understanding of molecular pathways of HCV replication have resulted in several small molecule direct-acting antivirals entering clinical trials in the past few years.Since identification of this virus, the NS3 serine protease contained within the N-terminal region of the NS3 protein has been studied extensively. 5 This chymotrypsin-like serine protease plays a pivotal role in viral replication and, therefore, is an attractive target for HCV antiviral therapeutics. 6,7 Intense efforts were focused in the past decade to discover novel small molecule agents that inhibit NS3 serine protease. 8 Proof of concept studies in humans with BILN 2061, a noncovalent P1-P3 macrocyclic inhibitor, validated this hypothesis. 9 Since then, several NS3 protease inhibitors have progressed to human clinical trials. Currently the most advanced among those are boceprevir (SCH 503034), 1, 10,11 and telaprevir (VX950), 12,13 from the slow-binding reversible R-ketoamide class, in phase III human evaluation. Inhibitors in phase II studies, from the structurally distinct noncovalent macrocyclic class, include 14 15 and MK-7009 (P2-P4 macrocycle). 16 Other NS3 protease inhibitors currently in clinical evaluation (structure not yet disclosed) include BI-201335, ABT-450, PHX-1766, ACH-1625 and VX-813. 8 Inhibitor 1 exhibited K i * = 14 nM in the enzyme binding assay, 17 EC 90 = 350 nM in the cell-based replicon assay, 18 and acceptable pharmacokinetic profile in rats and dogs (Figure 1). In our efforts to discover a second generation HCV protease inhibitor, we focused mainly on improving the in vitro potency and preclinical pharmacokinetic profile of the inhibitor, specifically exposure in monkeys. Further...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.