Varved lake sediments provide opportunities for high-resolution paleolimnological investigations that may extend monitoring surveys in order to target priority management actions under climate warming. This paper provides the synthesis of an international research program relying on >150 years-long, varved records for three managed perialpine lakes in Europe (Lakes Geneva, Annecy, and Bourget). The dynamics of the dominant, local human pressures, as well as the ecological responses in the pelagic, benthic, and littoral habitats were reconstructed using classical and newly developed paleo-proxies. Statistical modeling achieved the hierarchization of the drivers of their ecological trajectories. All three lakes underwent different levels of eutrophication in the first half of the XXth century, followed by re-oligotrophication. Climate warming came along with a 2 • C increase in air temperature over the last century, to which lakes were unequally thermally vulnerable. Unsurprisingly, phosphorous concentration has been the dominant ecological driver over the last century. Yet, other human-influenced, local environmental drivers (fisheries management practices, river regulations) have also significantly inflected ecological trajectories. Climate change has been impacting all habitats at rates that, in some cases, exceeded those of local factors. The amplitude and ecological responses to similar climate change varied between lakes, but, at least for pelagic habitats, rather depended on the intensity of local human pressures than on the thermal effect of climate change. Deep habitats yet showed higher sensitivity to climate change but substantial influence of river flows. As a consequence, adapted local management strategies, fully integrating nutrient inputs, fisheries management, and hydrological regulations, may enable mitigating the deleterious consequences of ongoing climate change on these ecosystems.
[1] The utility of elemental mapping by scanning X-ray fluorescence (XRF) in the study of annual laminated sedimentary records was investigated on eight annually laminated sediment types. The examples were chosen to illustrate the potential of this approach in environments dominated by terrigenous, biological and chemical deposition. Individual laminae were identifiable in elemental maps of all sediment types and were enhanced through the use of data reduction techniques (e.g., principal components transformation). Laminae were least apparent in clastic dominated systems with no seasonal changes in sediment sources. In biologically dominated systems, element maps provided insights into the composition of the varve subcomponents, related to alternating terrigenous and biologically dominated seasonal periods of deposition. Chemically precipitated structures were more prevalent than expected from visual investigations alone and may provide an underutilized paleoenvironmental signature of changing limnological conditions. Elemental mapping offers a valuable tool for the study of laminated records that complements existing techniques (e.g., SEM, digital image analysis).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.