Mutations in the EPM2A gene encoding a dual-specificity phosphatase (laforin) cause Lafora disease (LD), a progressive and invariably fatal epilepsy with periodic acid-Schiff-positive (PAS+) cytoplasmic inclusions (Lafora bodies) in the central nervous system. To study the pathology of LD and the functions of laforin, we disrupted the Epm2a gene in mice. At two months of age, homozygous null mutants developed widespread degeneration of neurons, most of which occurred in the absence of Lafora bodies. Dying neurons characteristically exhibit swelling in the endoplasmic reticulum, Golgi networks and mitochondria in the absence of apoptotic bodies or fragmentation of DNA. As Lafora bodies become more prominent at 4-12 months, organelles and nuclei are disrupted. The Lafora bodies, present both in neuronal and non-neural tissues, are positive for ubiquitin and advanced glycation end-products only in neurons, suggesting different pathological consequence for Lafora inclusions in neuronal tissues. Neuronal degeneration and Lafora inclusion bodies predate the onset of impaired behavioral responses, ataxia, spontaneous myoclonic seizures and EEG epileptiform activity. Our results suggest that LD is a primary neurodegenerative disorder that may utilize a non-apoptotic mechanism of cell death.
Childhood absence epilepsy (CAE) accounts for 10% to 12% of epilepsy in children under 16 years of age. We screened for mutations in the GABA(A) receptor (GABAR) beta 3 subunit gene (GABRB3) in 48 probands and families with remitting CAE. We found that four out of 48 families (8%) had mutations in GABRB3. One heterozygous missense mutation (P11S) in exon 1a segregated with four CAE-affected persons in one multiplex, two-generation Mexican family. P11S was also found in a singleton from Mexico. Another heterozygous missense mutation (S15F) was present in a singleton from Honduras. An exon 2 heterozygous missense mutation (G32R) was present in two CAE-affected persons and two persons affected with EEG-recorded spike and/or sharp wave in a two-generation Honduran family. All mutations were absent in 630 controls. We studied functions and possible pathogenicity by expressing mutations in HeLa cells with the use of Western blots and an in vitro translation and translocation system. Expression levels did not differ from those of controls, but all mutations showed hyperglycosylation in the in vitro translation and translocation system with canine microsomes. Functional analysis of human GABA(A) receptors (alpha 1 beta 3-v2 gamma 2S, alpha 1 beta 3-v2[P11S]gamma 2S, alpha 1 beta 3-v2[S15F]gamma 2S, and alpha 1 beta 3-v2[G32R]gamma 2S) transiently expressed in HEK293T cells with the use of rapid agonist application showed that each amino acid transversion in the beta 3-v2 subunit (P11S, S15F, and G32R) reduced GABA-evoked current density from whole cells. Mutated beta 3 subunit protein could thus cause absence seizures through a gain in glycosylation of mutated exon 1a and exon 2, affecting maturation and trafficking of GABAR from endoplasmic reticulum to cell surface and resulting in reduced GABA-evoked currents.
The 2001 classification subcommittee of the International League Against Epilepsy (ILAE) proposed to 'group JME, juvenile absence epilepsy, and epilepsy with tonic clonic seizures only under the sole heading of idiopathic generalized epilepsies (IGE) with variable phenotype'. The implication is that juvenile myoclonic epilepsy (JME) does not exist as the sole phenotype of family members and that it should no longer be classified by itself or considered a distinct disease entity. Although recognized as a common form of epilepsy and presumed to be a lifelong trait, a long-term follow-up of JME has not been performed. To address these two issues, we studied 257 prospectively ascertained JME patients and encountered four groups: (i) classic JME (72%), (ii) CAE (childhood absence epilepsy) evolving to JME (18%), (iii) JME with adolescent absence (7%), and (iv) JME with astatic seizures (3%). We examined clinical and EEG phenotypes of family members and assessed clinical course over a mean of 11 +/- 6 years and as long as 52 years. Forty per cent of JME families had JME as their sole clinical phenotype. Amongst relatives of classic JME families, JME was most common (40%) followed by grand mal (GM) only (35%). In contrast, 66% of families with CAE evolving to JME expressed the various phenotypes of IGE in family members. Absence seizures were more common in family members of CAE evolving to JME than in those of classic JME families (P < 0.001). Female preponderance, maternal transmission and poor response to treatment further characterized CAE evolving to JME. Only 7% of those with CAE evolving to JME were seizure-free compared with 58% of those with classic JME (P < 0.001), 56% with JME plus adolescent pyknoleptic absence and 62% with JME plus astatic seizures. Long-term follow-up (1-40 years for classic JME; 5-52 years for CAE evolving to JME, 5-26 years for JME with adolescent absence and 3-18 years for JME with astatic seizures) indicates that all subsyndromes are chronic and perhaps lifelong. Seven chromosome loci, three epilepsy-causing mutations and two genes with single nucleotide polymorphisms (SNPs) associating with JME reported in literature provide further evidence for JME as a distinct group of diseases.
Nine percent of consecutive juvenile myoclonic epilepsy cases from Mexico and Honduras clinics and 3% of clinic patients from Japan carry mutations in Myoclonin1/EFCH1. These results represent the highest number and percentage of mutations found for a juvenile myoclonic epilepsy causing gene of any population group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.