Aims/hypothesis Childhood obesity is a major public health problem in Mexico, affecting one in every three children. Genome-wide association studies identified genetic variants associated with childhood obesity, but a large missing heritability remains to be elucidated. We have recently shown a strong association between a highly polymorphic copy number variant encompassing the salivary amylase gene (AMY1 also known as AMY1A) and obesity in European and Asian adults. In the present study, we aimed to evaluate the association between AMY1 copy number and obesity in Mexican children. Methods We evaluated the number of AMY1 copies in 597 Mexican children (293 obese children and 304 normal weight controls) through highly sensitive digital PCR. The effect of AMY1 copy number on obesity status was assessed using a logistic regression model adjusted for age and sex. ResultsWe identified a marked effect of AMY1 copy number on reduced risk of obesity (OR per estimated copy 0.84, with the number of copies ranging from one to 16 in this population; p=4.25×10 −6). The global association between AMY1 copy number and reduced risk of obesity seemed to be mostly driven by the contribution of the highest AMY1 copy number. Strikingly, all children with >10 AMY1 copies were normal weight controls. Conclusions/interpretation Salivary amylase initiates the digestion of dietary starch, which is highly consumed in Mexico. Our current study suggests putative benefits of high number of AMY1 copies (and related production of salivary amylase) on energy metabolism in Mexican children.
Although hundreds of genome-wide association studies-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of 30 studies consisting of up to 13 005 cases (≥95th percentile of body mass index (BMI) achieved 2–18 years old) and 15 599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1888 cases and 4689 controls from seven cohorts of European and North/South American ancestry. In addition to observing 18 previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene, METTL15). The variant was nominally associated with only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than 10 single nucleotide polymorphisms (SNPs) (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.