Antarctic sea ice shows a large degree of regional variability, which is partly driven by severe weather events. Here we bring a new perspective on synoptic sea ice changes by presenting the first in situ observations of an explosive extratropical cyclone crossing the winter Antarctic marginal ice zone (MIZ) in the South Atlantic. This is complemented by the analysis of subsequent cyclones and highlights the rapid variations that ice‐landing cyclones cause on sea ice: Midlatitude warm oceanic air is advected onto the ice, and storm waves generated close to the ice edge contribute to the maintenance of an unconsolidated surface through which waves propagate far into the ice. MIZ features may thus extend further poleward in the Southern Ocean than currently estimated. A concentration‐based MIZ definition is inadequate, since it fails to describe a sea ice configuration which is deeply rearranged by synoptic weather.
This work explores a method to recover temperature, salinity, and potential density of the ocean using acoustic reflectivity data and time and space coincident expendable bathythermographs (XBT). The acoustically derived (vertical frequency >10 Hz) and the XBT-derived (vertical frequency <10 Hz) impedances are summed in the time domain to form impedance profiles. Temperature (T) and salinity (S) are then calculated from impedance using the international thermodynamics equations of seawater (GSW TEOS-10) and an empirical T-S relation derived with neural networks; and finally potential density (q) is calculated from T and S. The main difference between this method and previous inversion works done from real multichannel seismic reflection (MCS) data recorded in the ocean, is that it inverts density and it does not consider this magnitude constant along the profile, either in vertical or lateral dimension. We successfully test this method on MCS data collected in the Gulf of Cadiz (NE Atlantic Ocean). T, S, and q are inverted with accuracies of dT sd 50:1 C, dS sd 50:09, and dq sd 50:02kg=m 3 . Inverted temperature anomalies reveal baroclinic thermohaline fronts with intrusions. The observations support a mix of thermohaline features created by both double-diffusive and isopycnal stirring mechanisms. Our results show that reflectivity is primarily caused by thermal gradients but acoustic reflectors are not isopycnal in all domains.
[1] Recent work has shown that Full Waveform Inversion could be suitable to extract physical properties such as sound speed (c), density ( ), temperature (T), and salinity (S) from the weak impedance contrasts associated with the ocean's thermohaline fine structure.The seismic inversion approaches proposed so far are based on the iterative inversion of c from multichannel seismic data, while the rest of parameters (T, S, and ) are determined in a second step using two equations of state and a local T-S empirical relationship. In this work, we present an alternative to this approach. Using 1-D synthetic seismic data, we demonstrate that the direct full waveform inversion of T and S using adjoint methods is feasible without the use of any local T-S relationship and that the models of physical properties obtained with this approach are far more accurate than those inferred from c. Citation: Bornstein, G., B. Biescas, V. Sallarès, and J. F. Mojica (2013), Direct temperature and salinity acoustic full waveform inversion, Geophys. Res. Lett., 40,[4344][4345][4346][4347][4348]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.