Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphateactivated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energy homeostasis. However, still unknown is its role in memory formation. In the present study, we found that AMPK is primarily expressed in neurons in the hippocampus, and then we demonstrated a time-dependent decrease in AMPK activity and increase in mammalian target of rapamycin complex 1 (mTORC1) activity after contextual fear conditioning in the CA1 but not CA3 area of the dorsal hippocampus. Using pharmacological methods and adenovirus gene transfer to bidirectionally regulate AMPK activity, we found that increasing AMPK activity in the CA1 impaired the formation of long-term fear memory, and decreasing AMPK activity enhanced fear memory formation. These findings were associated with changes in the phosphorylation of AMPK and p70s6 kinase (p70s6k) and expression of BDNF and membrane GluR1 and GluR2 in the CA1. Furthermore, the prior administration of an mTORC1 inhibitor blocked the enhancing effect of AMPK inhibition on fear memory formation, suggesting that this negative regulation of contextual fear memory by AMPK in the CA1 depends on the mTORC1 signaling pathway. Finally, we found that AMPK activity regulated hippocampal spine growth associated with memory formation. In summary, our results indicate that AMPK is a key negative regulator of plasticity and fear memory formation.
Fear extinction has been extensively studied, but little is known about the molecular processes that underlie the persistence of extinction long-term memory (LTM). We found that microinfusion of norepinephrine (NE) into the CA1 area of the dorsal hippocampus during the early phase (0 h) after extinction enhanced extinction LTM at 2 and 14 days after extinction. Intra-CA1 infusion of NE during the late phase (12 h) after extinction selectively promoted extinction LTM at 14 days after extinction that was blocked by the b-receptor antagonist propranolol, protein kinase A (PKA) inhibitor Rp-cAMPS, and protein synthesis inhibitors anisomycin and emetine. The phosphorylation levels of PKA, cyclic adenosine monophosphate response element-binding protein (CREB), GluR1, and the membrane GluR1 level were increased by NE during the late phase after extinction that was also blocked by propranolol and Rp-cAMPS. These results suggest that the enhancement of extinction LTM persistence induced by NE requires the activation of the b-receptor/PKA/CREB signaling pathway and membrane GluR1 trafficking. Moreover, extinction increased the phosphorylation levels of Erk1/2, CREB, and GluR1, and the membrane GluR1 level during the late phase, and anisomycin/emetine alone disrupted the persistence of extinction LTM, indicating that the persistence of extinction LTM requires late-phase protein synthesis in the CA1. Propranolol and Rp-cAMPS did not completely disrupt the persistence of extinction LTM, suggesting that another b-receptor/PKA-independent mechanism underlies the persistence of extinction LTM. Altogether, our results showed that enhancing hippocampal noradrenergic activity during the late phase after extinction selectively promotes the persistence of extinction LTM.
Relapse to drug seeking can be caused by exposure to drug-associated cues, provoking drug craving even after prolonged abstinence. Recent studies demonstrated that AMP-activated protein kinase (AMPK) regulates neuronal morphology and membrane excitability in neurons. Here, we investigated the role of AMPK activity in the nucleus accumbens (NAc) in relapse to cocaine seeking. We found that exposure to drug-related cues reinstated cocaine-seeking behavior and increased AMPK and p70s6k phosphorylation in the NAc core but not shell. Augmenting AMPK activity by intra-NAc core infusions of the AMPK activator 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR) or adenovirus expressing constitutively active subunits of AMPK decreased cue-induced reinstatement of cocaine seeking and inhibited the mammalian target of rapamycin complex 1 (mTORC1) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways. In contrast, inhibition of AMPK activity by intra-NAc core infusions of the AMPK inhibitor compound C or adenovirus expressing dominant-negative subunits of AMPK increased cue-induced reinstatement of cocaine seeking and enhanced mTORC1 and ERK1/2 activity. The regulation of AMPK activity in the NAc shell had no effect on cue-induced cocaine seeking. Altogether, these results indicate that AMPK activity in the NAc core is critical for the cue-induced reinstatement of cocaine seeking, which may be mediated by mTORC1 and ERK1/2 signaling.
Steroid‐refractory (SR) acute graft‐versus‐host disease (aGVHD) is one of the leading causes of early mortality after allogeneic hematopoietic stem cell transplantation (allo‐HSCT). We investigated the efficacy, safety, prognostic factors, and optimal therapeutic protocol for SR‐aGVHD patients treated with basiliximab in a real‐world setting. Nine hundred and forty SR‐aGVHD patients were recruited from 36 hospitals in China, and 3683 doses of basiliximab were administered. Basiliximab was used as monotherapy (n = 642) or in combination with other second‐line treatments (n = 298). The cumulative incidence of overall response rate (ORR) at day 28 after basiliximab treatment was 79.4% (95% confidence interval [CI] 76.5%–82.3%). The probabilities of nonrelapse mortality and overall survival at 3 years after basiliximab treatment were 26.8% (95% CI 24.0%–29.6%) and 64.3% (95% CI 61.2%–67.4%), respectively. A 1:1 propensity score matching was performed to compare the efficacy and safety between the monotherapy and combined therapy groups. Combined therapy did not increase the ORR; conversely, it increased the infection rates compared with monotherapy. The multivariate analysis showed that combined therapy, grade III–IV aGVHD, and high‐risk refined Minnesota aGVHD risk score before basiliximab treatment were independently associated with the therapeutic response. Hence, we created a prognostic scoring system that could predict the risk of having a decreased likelihood of response after basiliximab treatment. Machine learning was used to develop a protocol that maximized the efficacy of basiliximab while maintaining acceptable levels of infection risk. Thus, real‐world data suggest that basiliximab is safe and effective for treating SR‐aGVHD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.