Long noncoding RNAs (lncRNA) play important roles in the tumorigenesis and progression of cancers. However, the clinical significance of lncRNAs and their regulatory mechanisms in nasopharyngeal carcinogenesis (NPC) are largely unknown. Here, based on a microarray analysis, we identified 384 dysregulated lncRNAs, of which, FAM225A was one of the most upregulated lncRNAs in NPC. FAM225A significantly associated with poor survival in NPC. N(6)-Methyladenosine (m6A) was highly enriched within FAM225A and enhanced its RNA stability. FAM225A functioned as an oncogenic lncRNA that promoted NPC cell proliferation, migration, invasion, tumor growth, and metastasis. Mechanistically, FAM225A functioned as a competing endogenous RNA (ceRNA) for sponging miR-590-3p and miR-1275, leading to the upregulation of their target integrin b3 (ITGB3), and the activation of FAK/PI3K/Akt signaling to promote NPC cell proliferation and invasion. In summary, our study reveals a potential ceRNA regulatory pathway in which FAM225A modulates ITGB3 expression by binding to miR-590-3p and miR-1275, ultimately promoting tumorigenesis and metastasis in NPC. Significance: These findings demonstrate the clinical significance of the lncRNA FAM225A in nasopharyngeal carcinoma (NPC) and the regulatory mechanism involved in NPC development and progression, providing a novel prognostic indicator and promising therapeutic target.
Alternative splicing (AS) has emerged as a key event in tumor development and microenvironment formation. However, comprehensive analysis of AS and its clinical significance in head and neck squamous cell carcinoma (HNSC) is urgently required. Methods: Genome-wide profiling of AS events using RNA-Seq data from The Cancer Genome Atlas (TCGA) program was performed in a cohort of 464 patients with HNSC. Cancer-associated AS events (CASEs) were identified between paired HNSC and adjacent normal tissues and evaluated in functional enrichment analysis. Splicing networks and prognostic models were constructed using bioinformatics tools. Unsupervised clustering of the CASEs identified was conducted and associations with clinical, molecular and immune features were analyzed. Results: We detected a total of 32,309 AS events and identified 473 CASEs in HNSC; among these, 91 were validated in an independent cohort (n = 15). Functional protein domains were frequently altered, especially by CASEs affecting cancer drivers, such as PCSK5. CASE parent genes were significantly enriched in pathways related to HNSC and the tumor immune microenvironment, such as the viral carcinogenesis (FDR < 0.001), Human Papillomavirus infection (FDR < 0.001), chemokine (FDR < 0.001) and T cell receptor (FDR < 0.001) signaling pathways. CASEs enriched in immune-related pathways were closely associated with immune cell infiltration and cytolytic activity. AS regulatory networks suggested a significant association between splicing factor (SF) expression and CASEs and might be regulated by SF methylation. Eighteen CASEs were identified as independent prognostic factors for overall and disease-free survival. Unsupervised clustering analysis revealed distinct correlations between AS-based clusters and prognosis, molecular characteristics and immune features. Immunogenic features and immune subgroups cooperatively depict the immune features of AS-based clusters. Conclusion: This comprehensive genome-wide analysis of the AS landscape in HNSC revealed novel AS events related to carcinogenesis and immune microenvironment, with implications for prognosis and therapeutic responses.
Background
To identify a radiomics signature to predict local recurrence in patients with non-metastatic T4 nasopharyngeal carcinoma (NPC).
Methods
A total of 737 patients from Sun Yat-sen University Cancer Center (training cohort:
n
= 360; internal validation cohort:
n
= 120) and Wuzhou Red Cross Hospital (external validation cohort:
n
= 257) underwent feature extraction from the largest axial area of the tumor on pretreatment magnetic resonance imaging scans. Feature selection was based on the prognostic performance and feature stability in the training cohort. Radscores were generated using the Cox proportional hazards regression model with the selected features in the training cohort and then validated in the internal and external validation cohorts. We also constructed a nomogram for predicting local recurrence-free survival (LRFS).
Findings
Eleven features were selected to construct the Radscore, which was significantly associated with LRFS. For the training, internal validation, and external validation cohorts, the Radscore (C-index: 0.741 vs. 0.753 vs. 0.730) outperformed clinical prognostic variables (C-index for primary gross tumor volume: 0.665 vs. 0.672 vs. 0.577; C-index for age: 0.571 vs. 0.629 vs. 0.605) in predicting LRFS. The generated radiomics nomogram, which integrated the Radscore and clinical variables, exhibited a satisfactory prediction performance (C-index: 0.810 vs. 0.807 vs. 0.753). The nomogram-defined high-risk group had a shorter LRFS than did the low-risk group (5-year LRFS: 73.6% vs. 95.3%,
P
< .001; 79.6% vs 95.8%,
P
= .006; 85.7% vs 96.7%,
P
= .005).
Interpretation
The Radscore can reliably predict LRFS in patients with non-metastatic T4 NPC, which might guide individual treatment decisions.
Fund
This study was funded by the Health & Medical Collaborative Innovation Project of Guangzhou City, China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.