The ability to carry out pyrolysis of entire wood chips and rods instead of small particles would be of great value for mobile pyrolysis units, because of the large possible savings in grinding costs (7-9 % of total process costs). With this goal in mind, we designed and constructed a novel lab-scale ablative reactor for fast pyrolysis of entire wood chips and even wood rods, converting those directly into a high yield of bio-oil for the first time. The bio-oil yield from fast pyrolysis of wood chips (10 × 20 mm) was as high as 60 wt. %, similar to that from wood crumbles (2 × 2 mm). Additionally, the yield and composition of bio-oil from ablative pyrolysis were in the same range as those obtained from a fluidized bed reactor using < 1 mm particles, with the small differences (slightly lower yield and HHV, and higher water content) attributed to the longer vapor residence times in the ablative reactor, which promote secondary reactions. We modeled the heat transfer characteristics of this semi-batch system, and comparison with experimental measurements confirmed that radiation from the hot components does not significantly decompose the wood prior to direct contact with the hot metallic surface in ablative pyrolysis. The findings of this work have the potential to lead to new developments for small-scale, mobile pyrolysis units for the disposal of forest residues.
Both end-functionalized (alpha-bromo and omega-carboxy) compounds were first tested for the radical reaction on the silicon-hydride (Si-H) terminated porous silicon (PSi) with/without the presence of diacyl peroxide initiator under microwave irradiation. Then the carboxylic acid monolayers (CAMs) assembled on PSi through the robust Si-C bonds were converted to amino-reactive linker, N-hydroxysuccinimide (NHS)-ester, terminated monolayers. And finally two proteins of bovine serum albumin (BSA) and lysozyme (Lys) were immobilized through amide bonds. The optimum PSi membrane for protein immobilization without collapse, with parameters of porous radii 4-10 nm and depth 0.2-4.6 mum, was prepared from the (100)-oriented p-type silicon wafer. The chemically converted surface products were monitored with Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscopy (FESEM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.