The potential mechanism of myelodysplastic syndromes (MDS) progressing to acute myeloid leukemia (AML) remains poorly elucidated. It has been proved that epigenetic alterations play crucial roles in the pathogenesis of cancer progression including MDS. However, fewer studies explored the whole-genome methylation alterations during MDS progression. Reduced representation bisulfite sequencing was conducted in four paired MDS/secondary AML (MDS/sAML) patients and intended to explore the underlying methylation-associated epigenetic drivers in MDS progression. In four paired MDS/sAML patients, cases at sAML stage exhibited significantly increased methylation level as compared with the matched MDS stage. A total of 1090 differentially methylated fragments (DMFs) (441 hypermethylated and 649 hypomethylated) were identified involving in MDS pathogenesis, whereas 103 DMFs (96 hypermethylated and 7 hypomethylated) were involved in MDS progression. Targeted bisulfite sequencing further identified that aberrant GFRA1, IRX1, NPY, and ZNF300 methylation were frequent events in an additional group of de novo MDS and AML patients, of which only ZNF300 methylation was associated with ZNF300 expression. Subsequently, ZNF300 hypermethylation in larger cohorts of de novo MDS and AML patients was confirmed by real-time quantitative methylation-specific PCR. It was illustrated that ZNF300 methylation could act as a potential biomarker for the diagnosis and prognosis in MDS and AML patients. Functional experiments demonstrated the anti-proliferative and pro-apoptotic role of ZNF300 overexpression in MDS-derived AML cell-line SKM-1. Collectively, genome-wide DNA hypermethylation were frequent events during MDS progression. Among these changes, ZNF300 methylation, a regulator of ZNF300 expression, acted as an epigenetic driver in MDS progression. These findings provided a theoretical basis for the usage of demethylation drugs in MDS patients against disease progression.
The deregulated DLX gene family members DLX1/2/3/4/5/6 ( DLXs ) caused by DNA methylation has been demonstrated in various cancers with therapeutic target value. However, the potential role of DLXs methylation in myeloid neoplasms such as acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) remains to be elucidated. Clinical significance of DLXs methylation/expression was analyzed in patient with AML and MDS. The functional roles of DLXs were determined in vitro. In the identification stage, we found that lower DLX5 expression was correlated with prognosis in AML among all DLXs analyzed by The Cancer Genome Atlas datasets. In the validation stage, we revealed that reduced DLX5 expression was frequently occurred, and was also correlated with promoter hypermethylation in AML evaluated by targeted bisulfite sequencing. Epigenetic studies also showed that DLX5 promoter DNA methylation was associated with its expression. By quantitative polymerase chain reaction, we also validated that DLX5 hypermethylation was frequent event in both AML and MDS, and also correlated with MDS transformation to leukemia. Moreover, DLX5 hypermethylation was associated with lower rate of complete remission and shorter time of leukemia‐free/overall survival, and was also confirmed by Logistic/Cox regression analysis. Functional studies revealed the antiproliferative and pro‐apoptotic effects of DLX5 in MDS‐derived AML cell‐line SKM‐1. Finally, bioinformatics analysis demonstrated that DLX5 functioned in leukemogenesis may be through the association with PI3K/Akt signaling pathway. Collectively, our findings demonstrated that DLX5 methylation, negatively correlated DLX5 expression, was a potential prognostic and predictive indicator in patients with AML and MDS, which could also act as an epigenetic driver in myeloid neoplasms.
Multidrug resistance (MDR) is one of the most important causes of chemotherapy failure and carcinoma recurrence. But the roles of the MDR-associated protein MRP1 in MDR remain poorly understood. Vascular endothelial growth factor (VEGF), one of the most active and specific vascular growth factors, plays a significant role in proliferation, differentiation, and metastasis of cancers. To explore the effect of VEGF on the expression of MRP1, we used recombinant human VEGF to stimulate K562 and BGC-823 cell lines. Quantitative real-time polymerase chain reaction and western blot analysis showed that the expression of MRP1 at both mRNA and protein levels was increased. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide results also showed that VEGF significantly enhanced the IC 50 of the cells treated with adriamycin. To explore the underlying regulatory mechanisms, we constructed MRP1 promoter and the luciferase reporter gene recombinant vector. The luciferase reporter gene assay showed that the activity of the MRP1 promoter was markedly increased by VEGF stimulation, while LY294002, an inhibitor of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, reduced this effect. Transcription factor specificity protein 1 (SP1) binding site mutation partially blocked the up-regulation of MRP1 promoter activity by VEGF. In summary, our results demonstrated that VEGF enhanced the expression of MRP1, and the PI3K/Akt signaling pathway and SP1 may be involved in this modulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.