Graphene faces the same problem, but its self-assembly into a 3D structures can effectively solve these problems. [5,6] The gelation of graphene oxide (GO) is the mostly used method to prepare a 3D assembled structure, and this process is triggered by the surface chemistry changes of GO NSs in solution. However, the gelation of the other 2D materials, such as transition metal dichalcogenides (TMDs), transition metal oxides (TMOs), and h-BN, [7][8][9][10] is difficult to achieve because of the fewer functional groups on their surface and their poor dispersion in an aqueous solution.Different from the above 2D materials, MXenes prepared by selective etching contain a number of functional groups on their surfaces and edges (F − , O, and OH) [11] show good dispersion in aqueous solution and have the potential to build 3D MXene-based assemblies by solution-based techniques. With the GO as the linker, 3D graphene/MXene hybrid monoliths have been assembled in solution with a low temperature heating. [12,13] In the assembly processes, the laminated MXene domains interacted with the π-conjugated GO sheets which then guided the formation of the 3D structure. The use of surfactants or polymers as the linkers to realize side-by-side joining of MXene NSs also has the potential to build 3D MXene-based monoliths. [14][15][16] However, all these strategies involve a complex process in which the MXenes are easily oxidized due to their high chemical activity. In addition, the above assembly process is different from the GO assembly that relies on self-gelation and has many advantages for achieving structure control by simply changing the solvent or the drying process. [17,18] Until now, the gelation of MXene in a similar manner to that of GO has been difficult to realize.Here, we report the fast gelation of MXene in an aqueous solution initiated by divalent metal ions. In a typical process, Fe 2+ ions are introduced in the MXene solution to destroy the electrostatic repulsive forces between the NSs and link them together, forming a stable 3D MXene hydrogel, similar to the GO hydrogel and its gelation process. [19] The use of metal ions as the joining sites enhances the interlinking of MXene NSs to form a 3D network due to their strong binding energy with the OH groups on the MXene surface. As a result, the formed hydrogel effectively suppresses the restacking of MXene NSs Gelation is an effective way to realize the self-assembly of nanomaterials into different macrostructures, and in a typical use, the gelation of graphene oxide (GO) produces various graphene-based carbon materials with different applications. However, the gelation of MXenes, another important type of 2D materials that have different surface chemistry from GO, is difficult to achieve. Here, the first gelation of MXenes in an aqueous dispersion that is initiated by divalent metal ions is reported, where the strong interaction between these ions and OH groups on the MXene surface plays a key role. Typically, Fe 2+ ions are introduced in the MXene dispersion whic...
Li-Se, [8] and that have extremely high energy densities. However, the nonuniform deposition of Li ions (Li + ) and the large volume change of the Li-metal anode during cycling result in the formation of numerous cracks in the solid-electrolyte interface (SEI) layers, [10][11][12] which accelerate the inhomogeneous deposition of Li and consume more electrolyte, [12,13] causing significant safety issues and low Coulombic efficiency (CE). [14][15][16] In order to solve these problems, tremendous efforts have been made to achieve uniform Li deposition or a steady SEI passivation layer by modifying the solid-state electrolyte, [3,[17][18][19] using lithiophilic hosts, [20][21][22][23][24] and adding electrolyte additives. [25][26][27] Another critical issue is the effect of current density on Li deposition behavior. [28,29] Compared with planar electrodes, a 3D current collector effectively reduces the local current density and delays Li dendrite growth rate due to a larger specific surface area. [30][31][32][33][34] However, there is a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.