Purpose
To investigate the involvement of hsa-microRNA-195-5p (miR-195) in progression and prognosis of human prostate cancer (PCa).
Experimental Design
qRT-PCR was performed to detect miR-195 expression in both PCa cell lines and clinical tissue samples. Its clinical significance was statistically analyzed. The roles of miR-195 and its candidate target gene ribosomal protein S6 kinase, 70kDa, polypeptide 1 (RPS6KB1) in PCa progression were confirmed based on both in vitro and in vivo systems.
Results
MiR-195 downregulation in PCa tissues was significantly associated with high Gleason score (P=0.001), positive metastasis failure (P<0.001) and biochemical recurrence (BCR, P<0.001). Survival analysis identified miR-195 as an independent prognostic factor for BCR-free survival of PCa patients (P=0.022). Then, we confirmed the tumor suppressive role of miR-195 through PCa cell invasion, migration and apoptosis assays in vitro, along with tumor xenografts growth, angiogenesis and invasion in vivo according to both gain-of-function and loss-of-function experiments. Additionally, RPS6KB1 was identified as a novel direct target of miR-195 through proteomic expression profiling combined with bioinformatic target prediction and luciferase reporter assay. Moreover, the re-expression and knockdown of RPS6KB1 could respectively rescue and imitate the effects induced by miR-195. Importantly, RPS6KB1 expression was closely correlated with aggressive progression and poor prognosis in PCa patients as opposed to miR-195. Furthermore, we identified MMP-9, VEGF, BAD and E-cadherin as the downstream effectors of miR-195-RPS6KB1 axis.
Conclusion
The newly identified miR-195-RPS6KB1 axis partially illustrates the molecular mechanism of PCa progression and represents a novel potential therapeutic target for PCa treatment.
Our previous microarray data showed that microRNA-224 (miR-224) was downregulated in human prostate cancer (PCa) tissues compared with adjacent benign tissues. However, the underlying mechanisms by which miR-224 is involved in PCa remain unclear. In this study, we identified TRIB1 as a target gene of miR-224. Forced expression of miR-224 suppressed PCa cell proliferation, invasion and migration, and promoted cell apoptosis by downregulating TRIB1. Moreover, the expression level of miR-224 in PCa tissues was negatively correlated with that of TRIB1. miR-224 downregulation was frequently found in PCa tissues with metastasis, higher PSA level and clinical stage, whereas TRIB1 upregulation was significantly associated with metastasis. Both miR-224 downregulation and TRIB1 upregulation were significantly associated with poor biochemical recurrence-free survival of patients with PCa. In conclusion, these findings reveal that the aberrant expression of miR-224 and TRIB1 may promote PCa progression and have potentials to serve as novel biomarkers for PCa prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.