Apigenin is a naturally occurring compound with anti-inflammatory, antioxidant, and anticancer properties. Here, we investigated the effects of apigeninin inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Apigenin effectively inhibited ulcerative colitis, a type of IBD, and CAC. Apigenin decreased myeloperoxidase (MPO), inflammatory cytokine and COX-2 levels, and it attenuated inflammatory cell infiltration in treated colon tissues as compared to untreated model colon tissues. Apigenin also reduced NF-κB and STAT3 activity in vitro and in vivo, thereby inhibiting inflammation and inflammation-induced carcinogenesis. Thus apigenin appears to inhibit inflammation and inflammation-induced carcinogenesisin IBD and CAC by suppressing STAT3-NF-κB signaling.
Pyrimethamine (Pyr), an antimalarial drug that targeting plasmodium dihydrofolate reductase (pDHFR), has been proved to have antitumor activity. However, its direct target on cancer cells remains unclear. Methotrexate (MTX) is a widely used anticancer drug that blocks human dihydrofolate reductase (hDHFR). In this work, we examined the anticancer effects of Pyr in vitro and in vivo. Our results showed that hDHFR and pDHFR have similar secondary and three-dimensional structures and that Pyr can inhibit the activity of hDHFR in lung cancer cells. Although Pyr and MTX can inhibit the proliferation of lung cancer cells by targeting DHFR, only Pyr can inhibit the epithelial-mesenchymal transition (EMT), metastasis and invasion of lung cancer cells. These results indicated that hDHFR is not the only target of Pyr. We further found that thymidine phosphorylase (TP), an enzyme that is closely associated with the EMT of cancer cells, is also a target protein of Pyr. The data retrieved from the Cancer Genome Atlas (TCGA) database revealed that TP overexpression is associated with poor prognosis of patients with lung cancer. In conclusion, Pyr plays a dual role in antitumor proliferation and metastasis by targeting DHFR and TP. Pyr may have potential clinical applications for the treatment of lung cancer.
Rationale: Malignant ascites caused by cancer cells results in poor prognosis and short average survival time. No effective treatment is currently available for malignant ascites. In this study, the effects of lentinan (LNT)-functionalized selenium nanoparticles (Selene) on malignant ascites were evaluated. Furthermore, the mechanism of Selene targeting mitochondria of tumor cells were also investigated. Methods: Selene were synthesized and characterized by TEM, AFM and particle size analysis. The OVCAR-3 and EAC cells induced ascites models were used to evaluate the effects of Selene on malignant ascites. Proteomic analysis, immunofluorescence, TEM and ICP-MS were used to determine the location of Selene in tumor cells. Mitochondrial membrane potential, ROS, ATP content, and caspase-1/3 activity were detected to evaluate the effect of Selene on mitochondrial function and cell apoptosis. Immunofluorescence, Co-IP, pull-down, duolink, Western blot, and FPLC were used to investigate the pathway of Selene targeting mitochondria. Results: Selene could effectively inhibit ascites induced by OVCAR-3 and EAC cells. Selene was mainly located in the mitochondria of tumor cells and induced apoptosis of tumor cells. The LNT in Selene was involved in caveolae-mediated endocytosis through the interaction between toll-like receptor-4 (TLR4) and caveolin 1 (CAV1). Furthermore, the Selene in the endocytic vesicles could enter the mitochondria via the mitochondrial membrane fusion pathway, which was mediated by TLR4/TNF receptor associated factor 3 (TRAF3)/mitofusin-1 (MFN1) protein complex. Conclusion: Selene is a candidate anticancer drug for the treatment of malignant ascites. And TLR4/TRAF3/MFN1 may be a specific nano-drug delivery pathway that could target the mitochondria.
BackgroundHypoxia commonly occurs in solid tumors. The hypoxia in the center of solid tumors considerably decreases the chemosensitivity of tumor cells and induces epithelial–mesenchymal transition (EMT) as well as drug resistance of antitumor drugs.MethodsHere, the effects of salidroside (Sal) combined with platinum drugs on human hepatocellular carcinoma were examined in vitro and in vivo. We investigated the antitumor effects of Sal by inhibiting the drug resistance and explained its mechanism in inhibiting tumor growth.FindingsThe results showed that Sal co-administration reverses the drug resistance of platinum drugs and suppressed metastasis induced by the hypoxic tumor microenvironment. Sal promoted the degradation of HIF-1α. In conclusion, Sal significantly increased the sensitivity to platinum drugs and inhibited hypoxia-induced EMT in hepatocellular carcinoma (HCC) through inhibiting HIF-1α signaling pathway.InterpretationTherefore, Sal may be an effective platinum drug sensitizer that can improve the chemotherapeutic efficacy in patients with HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.