Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explain one-fifth of heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ~2,000, ~3,700 and ~9,500 SNPs explained ~21%, ~24% and ~29% of phenotypic variance. Furthermore, all common variants together captured the majority (60%) of heritability. The 697 variants clustered in 423 loci enriched for genes, pathways, and tissue-types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin, and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.
To further dissect the genetic architecture of colorectal cancer (CRC), we performed whole-genome sequencing of 1,439 cases and 720 controls, imputed discovered sequence variants and Haplotype Reference Consortium panel variants into genome-wide association study data, and tested for association in 34,869 cases and 29,051 controls. Findings were followed up in an additional 23,262 cases and 38,296 controls. We discovered a strongly protective 0.3% frequency variant signal at
CHD1
. In a combined meta-analysis of 125,478 individuals, we identified 40 new independent signals at
P
<5×10
−8
, bringing the number of known independent signals for CRC to approximately 100. New signals implicate lower-frequency variants, Krüppel-like factors, Hedgehog signaling, Hippo-YAP signaling, long noncoding RNAs, somatic drivers, and support a role of immune function. Heritability analyses suggest that CRC risk is highly polygenic, and larger, more comprehensive studies enabling rare variant analysis will improve understanding of underlying biology, and impact personalized screening strategies and drug development.
We used data from 2 large international consortia to develop CRC risk calculation models that included genetic and environmental factors along with family history. These determine risk of CRC and starting ages for screening with greater accuracy than the family history only model, which is based on the current screening guideline. These scoring systems might serve as a first step toward developing individualized CRC prevention strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.