Acute lymphoblastic leukaemia (ALL) is a common paediatric cancer and is among the most curable cancers. However, the acquisition of drug resistance is a significant obstacle to the achievement of favourable outcomes, and autophagy is regarded as a mechanism that underlies chemoresistance. In this study, RT-qPCR was used to measure the expression of HMGB1 and Beclin1 in bone marrow mononuclear cells. A CCK-8 test was conducted to assess cell viability. Western blot, immunofluorescence and transmission electron microscopic analyses were performed to evaluate the autophagy levels. Immunoprecipitation analysis was performed to detect protein-protein interactions in the autophagy complexes. We found that HMGB1 expression correlated with the clinical status of ALL. In vitro, anticancer agent-induced cytotoxic effects were associated with autophagy-related drug resistance, and these effects were ameliorated by FIP200 depletion or the application of autophagy inhibitors. Moreover, the Ulk1‑Atg13-FIP200 complex, which promotes HMGB1 trafficking, acted upstream of the HMGB1-Beclin1 and PI3KC3-Beclin1 complexes and played a critical role in autophagy. Targeting the transformation of autophagic complexes or HMGB1 translocation may suppress autophagy and consequently overcome chemoresistance in leukaemia.
High mobility group box protein 1 (HMGB1) is an evolutionarily conserved non-histone chromatinbinding protein. In a previous study, we showed that treating leukemic cells with chemotherapeutic drugs leads to the translocation of HMGB1, which is involved in autophagy and ultimately promotes chemoresistance in leukemia. However, the underlying translocation mechanism of HMGB1 in chemotherapy-induced autophagy remains unclear. In this study, we showed that knockdown of SIRT6 or PARP1 gene expression significantly inhibited HMGB1 cytoplasmic translocation and autophagy. Meanwhile, we found that SIRT6, an important upstream protein of PARP1, associated with PARP1, leading to the stimulation of polyADP-ribose polymerase activity. We further demonstrated that SIRT6 and PARP1 activation were required for chemotherapy-induced ADP-ribosylation of HMGB1 in leukemic cells and then influenced the acetylation of HMGB1, finally promoting the autophagy of leukemic cells mediated by HMGB1 translocation. These findings provide new insights into the mechanism of chemotherapeutic drug resistance. Targeting the HMGB1 translocation may overcome autophagy-related chemoresistance in leukemia.
Acute lymphoblastic leukaemia (ALL) is the most prevalent childhood malignancy. Although most children with ALL are cured, there is still a group of patients for which therapy fails owing to severe toxicities and drug resistance. Ginsenoside Rh2 (GRh2), a major bioactive component isolated from Panax ginseng, has been shown to have a therapeutic effect on some tumors. However, the molecular mechanisms of cell death induced by 20(S)-GRh2 in ALL cells remains unclear. In this study, we showed that 20(S)-GRh2 inhibited the cell growth and induced mitochondria-dependent apoptosis and autophagy. But it has no cytotoxic effect on human normal blood cells. Furthermore, autophagy plays a protective role in 20(S)-GRh2-induced apoptosis in ALL cell lines and human primary ALL cells. We demonstrated that either genetic or pharmacologic inhibition of autophagy could be more effective in reducing viability and enhancing 20(S)-GRh2-induced toxicity than 20(S)-GRh2 treatment alone. In addition, inhibition of autophagy could aggravate mitochondrial ROS generation and mitochondrial damage, and then accelerate mitochondria-dependent apoptosis. Taken together, these results suggest that inhibition of autophagy can sensitize ALL cells towards 20(S)-GRh2. The appropriate inhibition of autophagy could provide a powerful strategy to increase the potency of 20(S)-GRh2 as a novel anticancer agent for ALL therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.