Administration of exosomes derived from mesenchymal stromal cells (MSCs) could improve some neurologic conditions by transferring functional biomolecules to recipient cells. Furthermore, exosomes from hypoxic progenitor cells exerted better therapeutic effects in organ injury through specific cargoes. However, there are no related reports about whether exosomes derived from MSCs or hypoxia-preconditioned MSCs (PC-MSCs) could prevent memory deficits in Alzheimer disease (AD). In this study, the exosomes derived from MSCs or PC-MSCs were systemically administered to transgenic APP/PS1 mice. The expression of miR-21 in MSCs was significantly increased after hypoxic treatment. Injection of exosomes from normoxic MSCs could rescue cognition and memory impairment according to results of the Morris water maze test, reduced plaque deposition, and Aβ levels in the brain; could decrease the activation of astrocytes and microglia; could down-regulate proinflammatory cytokines (TNF-α and IL-1β); and could up-regulate anti-inflammatory cytokines (IL-4 and -10) in AD mice, as well as reduce the activation of signal transducer and activator of transcription 3 (STAT3) and NF-κB. Compared to the group administered exosomes from normoxic MSCs, in the group administered exosomes from PC-MSCs, learning and memory capabilities were significantly improved; the plaque deposition and Aβ levels were lower, and expression of growth-associated protein 43, synapsin 1, and IL-10 was increased; and the levels of glial fibrillary acidic protein, ionized calcium-binding adaptor molecule 1, TNF-α, IL-1β, and activation of STAT3 and NF-κB were sharply decreased. More importantly, exosomes from PC-MSCs effectively increased the level of miR-21 in the brain of AD mice. Additionally, replenishment of miR-21 restored the cognitive deficits in APP/PS1 mice and prevented pathologic features. Taken together, these findings suggest that exosomes from PC-MSCs could improve the learning and memory capabilities of APP/PS1 mice, and that the underlying mechanism may lie in the restoration of synaptic dysfunction and regulation of inflammatory responses through regulation of miR-21.-Cui, G.-H., Wu, J., Mou, F.-F., Xie, W.-H., Wang, F.-B., Wang, Q.-L., Fang, J., Xu, Y.-W., Dong, Y.-R., Liu, J.-R., Guo, H.-D. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice.
Background Exosomes are lipid-bilayer enclosed nano-sized vesicles that transfer functional cellular proteins, mRNA and miRNAs. Mesenchymal stem cells (MSCs) derived exosomes have been demonstrated to prevent memory deficits in the animal model of Alzheimer’s disease (AD). However, the intravenously injected exosomes could be abundantly tracked in other organs except for the targeted regions in the brain. Here, we proposed the use of central nervous system-specific rabies viral glycoprotein (RVG) peptide to target intravenously-infused exosomes derived from MSCs (MSC-Exo) to the brain of transgenic APP/PS1 mice. MSC-Exo were conjugated with RVG through a DOPE-NHS linker. Results RVG-tagged MSC-Exo exhibited improved targeting to the cortex and hippocampus after being administered intravenously. Compared with the group administered MSC-Exo, in the group administered RVG-conjugated MSC-Exo (MSC-RVG-Exo) plaque deposition and Aβ levels were sharply decreased and activation of astrocytes was obviously reduced. The brain targeted exosomes derived from MSCs was better than unmodified exosomes to improve cognitive function in APP/PS1 mice according to Morris water maze test. Additionally, although MSC-Exo injected intravenously reduced the expression of pro-inflammatory mediators TNF-α, IL-β, and IL-6, but the changes of anti-inflammatory factors IL-10 and IL-13 were not obvious. However, administration of MSC-RVG-Exo significantly reduced the levels of TNF-α, IL-β, and IL-6 while significantly raised the levels of IL-10, IL-4 and IL-13. Conclusions Taken together, our results demonstrated a novel method for increasing delivery of exosomes for treatment of AD. By targeting exosomes to the cortex and hippocampus of AD mouse, there was a significant improvement in learning and memory capabilities with reduced plaque deposition and Aβ levels, and normalized levels of inflammatory cytokines. Electronic supplementary material The online version of this article (10.1186/s12979-019-0150-2) contains supplementary material, which is available to authorized users.
Migraine is a common recurrent neurological disorder combining nausea, vomiting, and hypersensitivities to visual, auditory, olfactory and somatosensory stimuli. However, the dysfunction of the sensorimotor network in migraineurs has not been well clarified. In the present study, we evaluated the dysfunction of the sensorimotor network in 30 migraineurs without aura and in 31 controls by combining regional homogeneity (ReHo), amplitudes of low-frequency fluctuation (ALFF) and degree centrality (DC) analysis methods based on resting-state fMRI. A seed-based functional connectivity (FC) analysis was used to investigate whether the dysfunctional areas within the sensorimotor network exhibited abnormal FC with other brain areas. Compared to the controls, the migraineurs without aura exhibited significantly smaller ReHo, ALFF and DC values in the primary somatosensory cortex (S1) and right premotor cortex (PMC). The migraineurs showed weaker FC between the S1 and brain areas within the pain intensity and spatial discrimination pathways and trigemino-thalamo-cortical nociceptive pathway. We proposed that the dysfunction of the S1 and PMC and the decreased FC between the S1 and brain areas in migraineurs without aura may disrupt the discrimination of sensory features of pain and affect nociception pathways, and would be involved in the dysfunctional mechanism in migraine.
BackgroundMigraine constitute a disorder characterized by recurrent headaches, and have a high prevalence, a high socio-economic burden and severe effects on quality of life. Our previous fMRI study demonstrated that some brain regions are functional alterations in migraineurs. As the function of the human brain is related to its structure, we further investigated white and gray matter structural alterations in migraineurs.MethodsIn current study, we used surface-based morphometry, voxel-based morphometry and diffusion tensor imaging analyses to detect structural alterations of the white matter and gray matter in 32 migraineurs without aura compared with 32 age- and gender-matched healthy controls.ResultsWe found that migraineurs without aura exhibited significantly increased gray matter volume in the bilateral cerebellar culmen, increased cortical thickness in the lateral occipital-temporal cortex, decreased cortical thickness in the right insula, increased gyrification index in left postcentral gyrus, superior parietal lobule and right lateral occipital cortex, and decreased gyrification index in the left rostral middle frontal gyrus compared with controls. No significant change in white matter microstructure was found in DTI analyses.ConclusionThe significantly altered gray matter brain regions were known to be associated with sensory discrimination of pain, multi-sensory integration and nociceptive information processing and were consistent with our previous fMRI study, and may be involved in the pathological mechanism of migraine without aura.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.